Mathematical Achievements
In mathematics, there is a distinction between having an insight and having a proof. Ramanujan's talent suggested a plethora of formulae that could then be investigated in depth later. It is said that Ramanujan's discoveries are unusually rich and that there is often more to them than initially meets the eye. As a by-product, new directions of research were opened up. Examples of the most interesting of these formulae include the intriguing infinite series for π, one of which is given below
This result is based on the negative fundamental discriminant d = −4×58 with class number h(d) = 2 (note that 5×7×13×58 = 26390 and that 9801=99×99; 396=4×99) and is related to the fact that
Compare to Heegner numbers, which have class number 1 and yield similar formulae. Ramanujan's series for π converges extraordinarily rapidly (exponentially) and forms the basis of some of the fastest algorithms currently used to calculate π. Truncating the sum to the first term also gives the approximation for π, which is correct to six decimal places.
One of his remarkable capabilities was the rapid solution for problems. He was sharing a room with P. C. Mahalanobis who had a problem, "Imagine that you are on a street with houses marked 1 through n. There is a house in between (x) such that the sum of the house numbers to left of it equals the sum of the house numbers to its right. If n is between 50 and 500, what are n and x?" This is a bivariate problem with multiple solutions. Ramanujan thought about it and gave the answer with a twist: He gave a continued fraction. The unusual part was that it was the solution to the whole class of problems. Mahalanobis was astounded and asked how he did it. "It is simple. The minute I heard the problem, I knew that the answer was a continued fraction. Which continued fraction, I asked myself. Then the answer came to my mind," Ramanujan replied.
His intuition also led him to derive some previously unknown identities, such as
for all, where is the gamma function. Expanding into series of powers and equating coefficients of, and gives some deep identities for the hyperbolic secant.
In 1918, Hardy and Ramanujan studied the partition function P(n) extensively and gave a non-convergent asymptotic series that permits exact computation of the number of partitions of an integer. Hans Rademacher, in 1937, was able to refine their formula to find an exact convergent series solution to this problem. Ramanujan and Hardy's work in this area gave rise to a powerful new method for finding asymptotic formulae, called the circle method.
He discovered mock theta functions in the last year of his life. For many years these functions were a mystery, but they are now known to be the holomorphic parts of harmonic weak Maass forms.
Read more about this topic: Srinivasa Ramanujan
Famous quotes containing the words mathematical and/or achievements:
“All science requires mathematics. The knowledge of mathematical things is almost innate in us.... This is the easiest of sciences, a fact which is obvious in that no ones brain rejects it; for laymen and people who are utterly illiterate know how to count and reckon.”
—Roger Bacon (c. 1214c. 1294)
“Our achievements speak for themselves. What we have to keep track of are our failures, discouragements, and doubts. We tend to forget the past difficulties, the many false starts, and the painful groping. We see our past achievements as the end result of a clean forward thrust, and our present difficulties as signs of decline and decay.”
—Eric Hoffer (19021983)