Square Root - Uniqueness of Square Roots in General Rings

Uniqueness of Square Roots in General Rings

In a ring we call an element b a square root of a iff b2 = a.

In an integral domain, suppose the element a has some square root b, so b2 = a. Then this square root is not necessarily unique, but it is "almost unique" in the following sense: If x too is a square root of a, then x2 = a = b2. So x2 – b2 = 0, or, by commutativity, (x + b)(xb) = 0. Because there are no zero divisors in the integral domain, we conclude that one factor is zero, and x = ±b. The square root of a, if it exists, is therefore unique up to a sign, in integral domains.

To see that the square root need not be unique up to sign in a general ring, consider the ring from modular arithmetic. Here, the element 1 has four distinct square roots, namely ±1 and ±3. On the other hand, the element 2 has no square root. See also the article quadratic residue for details.

Another example is provided by the quaternions in which the element −1 has an infinitude of square roots including ±i, ±j, and ±k.

In fact, the set of square roots of −1 is exactly

Hence this set is exactly the same size and shape as the (surface of the) unit sphere in 3-space.

Read more about this topic:  Square Root

Famous quotes containing the words uniqueness of, uniqueness, square, roots, general and/or rings:

    Somehow we have been taught to believe that the experiences of girls and women are not important in the study and understanding of human behavior. If we know men, then we know all of humankind. These prevalent cultural attitudes totally deny the uniqueness of the female experience, limiting the development of girls and women and depriving a needy world of the gifts, talents, and resources our daughters have to offer.
    Jeanne Elium (20th century)

    Until now when we have started to talk about the uniqueness of America we have almost always ended by comparing ourselves to Europe. Toward her we have felt all the attraction and repulsions of Oedipus.
    Daniel J. Boorstin (b. 1914)

    I walked by the Union Square Bar, I was gonna go in. And I saw myself, my reflection in the window. And I thought, “I wonder who that bum is.” And then I saw it was me. Now look at me, I’m a bum. Look at me. Look at you. You’re a bum.
    —J.P. (James Pinckney)

    A poet must be a psychologist, but a secret one: he should know and feel the roots of phenomena but present only the phenomena themselves—in full bloom or as they fade away.
    Ivan Sergeevich Turgenev (1818–1883)

    In the drawing room [of the Queen’s palace] hung a Venus and Cupid by Michaelangelo, in which, instead of a bit of drapery, the painter has placed Cupid’s foot between Venus’s thighs. Queen Caroline asked General Guise, an old connoisseur, if it was not a very fine piece? He replied “Madam, the painter was a fool, for he has placed the foot where the hand should be.”
    Horace Walpole (1717–1797)

    We will have rings and things, and fine array,
    And kiss me, Kate, we will be married o’ Sunday.
    William Shakespeare (1564–1616)