Square Root - Uniqueness of Square Roots in General Rings

Uniqueness of Square Roots in General Rings

In a ring we call an element b a square root of a iff b2 = a.

In an integral domain, suppose the element a has some square root b, so b2 = a. Then this square root is not necessarily unique, but it is "almost unique" in the following sense: If x too is a square root of a, then x2 = a = b2. So x2 – b2 = 0, or, by commutativity, (x + b)(xb) = 0. Because there are no zero divisors in the integral domain, we conclude that one factor is zero, and x = ±b. The square root of a, if it exists, is therefore unique up to a sign, in integral domains.

To see that the square root need not be unique up to sign in a general ring, consider the ring from modular arithmetic. Here, the element 1 has four distinct square roots, namely ±1 and ±3. On the other hand, the element 2 has no square root. See also the article quadratic residue for details.

Another example is provided by the quaternions in which the element −1 has an infinitude of square roots including ±i, ±j, and ±k.

In fact, the set of square roots of −1 is exactly

Hence this set is exactly the same size and shape as the (surface of the) unit sphere in 3-space.

Read more about this topic:  Square Root

Famous quotes containing the words uniqueness of, uniqueness, square, roots, general and/or rings:

    Somehow we have been taught to believe that the experiences of girls and women are not important in the study and understanding of human behavior. If we know men, then we know all of humankind. These prevalent cultural attitudes totally deny the uniqueness of the female experience, limiting the development of girls and women and depriving a needy world of the gifts, talents, and resources our daughters have to offer.
    Jeanne Elium (20th century)

    Until now when we have started to talk about the uniqueness of America we have almost always ended by comparing ourselves to Europe. Toward her we have felt all the attraction and repulsions of Oedipus.
    Daniel J. Boorstin (b. 1914)

    Mark you the floore? that square & speckled stone,
    Which looks so firm and strong,
    Is Patience:
    George Herbert (1593–1633)

    You know, honey, us colored folks is branches without roots and that makes things come round in queer ways.
    Zora Neale Hurston (1891–1960)

    There is absolutely no evidence—developmental or otherwise—to support separating twins in school as a general policy. . . . The best policy seems to be no policy at all, which means that each year, you and your children need to decide what will work best for you.
    Pamela Patrick Novotny (20th century)

    Ah, Christ, I love you rings to the wild sky
    And I must think a little of the past:
    When I was ten I told a stinking lie
    That got a black boy whipped....
    Allen Tate (1899–1979)