Square Roots of Negative and Complex Numbers
Second leaf of the complex square root Using the Riemann surface of the square root, one can see how the two leaves fit together
The square of any positive or negative number is positive, and the square of 0 is 0. Therefore, no negative number can have a real square root. However, it is possible to work with a more inclusive set of numbers, called the complex numbers, that does contain solutions to the square root of a negative number. This is done by introducing a new number, denoted by i (sometimes j, especially in the context of electricity where "i" traditionally represents electric current) and called the imaginary unit, which is defined such that i2 = –1. Using this notation, we can think of i as the square root of –1, but notice that we also have (–i)2 = i2 = –1 and so –i is also a square root of –1. By convention, the principal square root of –1 is i, or more generally, if x is any positive number, then the principal square root of –x is
The right side (as well as its negative) is indeed a square root of –x, since
For every non-zero complex number z there exist precisely two numbers w such that w2 = z: the principal square root of z (defined below), and its negative.
Read more about this topic: Square Root
Famous quotes containing the words square, roots, negative, complex and/or numbers:
“Interpreting the dance: young women in white dancing in a ring can only be virgins; old women in black dancing in a ring can only be witches; but middle-aged women in colors, square dancing...?”
—Mason Cooley (b. 1927)
“A good word is as a good tree
its roots are firm,
and its branches are in heaven;
it gives its produce every season
by the leave of its Lord.”
—QurAn. Abraham 14:29-30, ed. Arthur J. Arberry (1955)
“The negative cautions of science are never popular. If the experimentalist would not commit himself, the social philosopher, the preacher, and the pedagogue tried the harder to give a short- cut answer.”
—Margaret Mead (19011978)
“It would be naive to think that peace and justice can be achieved easily. No set of rules or study of history will automatically resolve the problems.... However, with faith and perseverance,... complex problems in the past have been resolved in our search for justice and peace. They can be resolved in the future, provided, of course, that we can think of five new ways to measure the height of a tall building by using a barometer.”
—Jimmy Carter (James Earl Carter, Jr.)
“The forward Youth that would appear
Must now forsake his Muses dear,
Nor in the Shadows sing
His Numbers languishing.”
—Andrew Marvell (16211678)