Square Root - Square Roots of Negative and Complex Numbers

Square Roots of Negative and Complex Numbers

Second leaf of the complex square root Using the Riemann surface of the square root, one can see how the two leaves fit together


The square of any positive or negative number is positive, and the square of 0 is 0. Therefore, no negative number can have a real square root. However, it is possible to work with a more inclusive set of numbers, called the complex numbers, that does contain solutions to the square root of a negative number. This is done by introducing a new number, denoted by i (sometimes j, especially in the context of electricity where "i" traditionally represents electric current) and called the imaginary unit, which is defined such that i2 = –1. Using this notation, we can think of i as the square root of –1, but notice that we also have (–i)2 = i2 = –1 and so –i is also a square root of –1. By convention, the principal square root of –1 is i, or more generally, if x is any positive number, then the principal square root of –x is

The right side (as well as its negative) is indeed a square root of –x, since

For every non-zero complex number z there exist precisely two numbers w such that w2 = z: the principal square root of z (defined below), and its negative.

Read more about this topic:  Square Root

Famous quotes containing the words square, roots, negative, complex and/or numbers:

    After the planet becomes theirs, many millions of years will have to pass before a beetle particularly loved by God, at the end of its calculations will find written on a sheet of paper in letters of fire that energy is equal to the mass multiplied by the square of the velocity of light. The new kings of the world will live tranquilly for a long time, confining themselves to devouring each other and being parasites among each other on a cottage industry scale.
    Primo Levi (1919–1987)

    Now fades the lasts long streak of snow,
    Now burgeons every maze of quick
    About the flowering squares, and thick
    By ashen roots the violets blow.
    Alfred Tennyson (1809–1892)

    The idealist’s programme of political or economic reform may be impracticable, absurd, demonstrably ridiculous; but it can never be successfully opposed merely by pointing out that this is the case. A negative opposition cannot be wholly effectual: there must be a competing idealism; something must be offered that is not only less objectionable but more desirable.
    Charles Horton Cooley (1864–1929)

    Instead of seeing society as a collection of clearly defined “interest groups,” society must be reconceptualized as a complex network of groups of interacting individuals whose membership and communication patterns are seldom confined to one such group alone.
    Diana Crane (b. 1933)

    ... there are persons who seem to have overcome obstacles and by character and perseverance to have risen to the top. But we have no record of the numbers of able persons who fall by the wayside, persons who, with enough encouragement and opportunity, might make great contributions.
    Mary Barnett Gilson (1877–?)