Square Pyramidal Number - Formula

Formula

The first few square pyramidal numbers are:

1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819 (sequence A000330 in OEIS).

These numbers can be expressed in a formula as

This is a special case of Faulhaber's formula, and may be proved by a straightforward mathematical induction. An equivalent formula is given in Fibonacci's Liber Abaci (1202, ch. II.12).

In modern mathematics, figurate numbers are formalized by the Ehrhart polynomials. The Ehrhart polynomial L(P,t) of a polyhedron P is a polynomial that counts the number of integer points in a copy of P that is expanded by multiplying all its coordinates by the number t. The Ehrhart polynomial of a pyramid whose base is a unit square with integer coordinates, and whose apex is an integer point at height one above the base plane, is (t + 1)(t + 2)(2t + 3)/6 = Pt + 1.

Read more about this topic:  Square Pyramidal Number

Famous quotes containing the word formula:

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    Given for one instant an intelligence which could comprehend all the forces by which nature is animated and the respective positions of the beings which compose it, if moreover this intelligence were vast enough to submit these data to analysis, it would embrace in the same formula both the movements of the largest bodies in the universe and those of the lightest atom; to it nothing would be uncertain, and the future as the past would be present to its eyes.
    Pierre Simon De Laplace (1749–1827)

    Ideals possess the strange quality that if they were completely realized they would turn into nonsense. One could easily follow a commandment such as “Thou shalt not kill” to the point of dying of starvation; and I might establish the formula that for the proper functioning of the mesh of our ideals, as in the case of a strainer, the holes are just as important as the mesh.
    Robert Musil (1880–1942)