Speed of Gravity - Lorentz Covariant Models

Lorentz Covariant Models

Henri Poincaré argued in 1904 that a propagation speed of gravity which is greater than c would contradict the concept of local time (based on synchronization by light signals) and the principle of relativity. He wrote:

What would happen if we could communicate by signals other than those of light, the velocity of propagation of which differed from that of light? If, after having regulated our watches by the optimal method, we wished to verify the result by means of these new signals, we should observe discrepancies due to the common translatory motion of the two stations. And are such signals inconceivable, if we take the view of Laplace, that universal gravitation is transmitted with a velocity a million times as great as that of light?

However, in 1905 Poincaré calculated that changes in the gravitational field can propagate with the speed of light if it is presupposed that such a theory is based on the Lorentz transformation. He wrote:

Laplace showed in effect that the propagation is either instantaneous or much faster than that of light. However, Laplace examined the hypothesis of finite propagation velocity ceteris non mutatis; here, on the contrary, this hypothesis is conjoined with many others, and it may be that between them a more or less perfect compensation takes place. The application of the Lorentz transformation has already provided us with numerous examples of this.

Similar models were also proposed by Hermann Minkowski (1907) and Arnold Sommerfeld (1910). However, those attempts were quickly superseded by Einstein's theory of general relativity.

Read more about this topic:  Speed Of Gravity

Famous quotes containing the word models:

    Today it is not the classroom nor the classics which are the repositories of models of eloquence, but the ad agencies.
    Marshall McLuhan (1911–1980)