Special Unitary Group - Properties

Properties

The special unitary group SU(n) is a real matrix Lie group of dimension n2 − 1. Topologically, it is compact and simply connected. Algebraically, it is a simple Lie group (meaning its Lie algebra is simple; see below). The center of SU(n) is isomorphic to the cyclic group Zn. Its outer automorphism group, for n ≥ 3, is Z2, while the outer automorphism group of SU(2) is the trivial group.

The Lie algebra of SU(n), denoted by su(n) is generated by n2 operators, which satisfy the commutator relationship (for i, j, k, = 1, 2, ..., n)

Additionally, the operator

satisfies

which implies that the number of independent generators is n2 − 1.

Read more about this topic:  Special Unitary Group

Famous quotes containing the word properties:

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)