Generalized Special Unitary Group
For a field F, the generalized special unitary group over F, SU(p, q; F), is the group of all linear transformations of determinant 1 of a vector space of rank n = p + q over F which leave invariant a nondegenerate, Hermitian form of signature (p, q). This group is often referred to as the special unitary group of signature p q over F. The field F can be replaced by a commutative ring, in which case the vector space is replaced by a free module.
Specifically, fix a Hermitian matrix A of signature p q in GL(n, R), then all
satisfy
Often one will see the notation SU(p, q) without reference to a ring or field, in this case the ring or field being referred to is C and this gives one of the classical Lie groups. The standard choice for A when F = C is
However there may be better choices for A for certain dimensions which exhibit more behaviour under restriction to subrings of C.
Read more about this topic: Special Unitary Group
Famous quotes containing the words generalized, special and/or group:
“One is conscious of no brave and noble earnestness in it, of no generalized passion for intellectual and spiritual adventure, of no organized determination to think things out. What is there is a highly self-conscious and insipid correctness, a bloodless respectability submergence of matter in mannerin brief, what is there is the feeble, uninspiring quality of German painting and English music.”
—H.L. (Henry Lewis)
“... there has been a very special man in my life for the past year. All Ill say about him is that hes kind, warm, mature, someone I can trustand hes not a politician.”
—Donna Rice (b. c. 1962)
“The boys think they can all be athletes, and the girls think they can all be singers. Thats the way to fame and success. ...as a group blacks must give up their illusions.”
—Kristin Hunter (b. 1931)