Generators and Relations
If working over a ring where SL is generated by transvections (such as a field or Euclidean domain), one can give a presentation of SL using transvections with some relations. Transvections satisfy the Steinberg relations, but these are not sufficient: the resulting group is the Steinberg group, which is not the special linear group, but rather the universal central extension of the commutator subgroup of GL.
A sufficient set of relations for SL(n, Z) for n ≥ 3 is given by two of the Steinberg relations, plus a third relation (Conder, Robertson & Williams 1992, p. 19). Let Tij := eij(1) be the elementary matrix with 1's on the diagonal and in the ij position, and 0's elsewhere (and i ≠ j). Then
are a complete set of relations for SL(n, Z), n ≥ 3.
Read more about this topic: Special Linear Group
Famous quotes containing the word relations:
“If one could be friendly with women, what a pleasurethe relationship so secret and private compared with relations with men. Why not write about it truthfully?”
—Virginia Woolf (18821941)