Spatial Acceleration - Definition

Definition

Consider a moving rigid body and the velocity of a particle/point P along the body being a function of the position and velocity of a center particle/point C and the angular velocity .

The linear velocity vector at P is expressed in terms of the velocity vector at C as:

where is the angular velocity vector.

The material acceleration at P is:

where is the angular acceleration vector.

The spatial acceleration at P is expressed in terms of the spatial acceleration at C as:

which is similar to the velocity transformation above.

In general the spatial acceleration of a particle point P that is moving with linear velocity is derived from the material acceleration at P as:

Read more about this topic:  Spatial Acceleration

Famous quotes containing the word definition:

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)