Application in (pseudo-)random Number Generation
Sophie Germain primes have a practical application in the generation of pseudo-random numbers. The decimal expansion of 1/q will produce a stream of q − 1 pseudo-random digits, if q is the safe prime of a Sophie Germain prime p, with p congruent to 3, 9, or 11 (mod 20). Thus “suitable” prime numbers q are 7, 23, 47, 59, 167, 179, etc. (corresponding to p = 3, 11, 23, 29, 83, 89, etc.). The result is a stream of length q − 1 digits (including leading zeros). So, for example, using q = 23 generates the pseudo-random digits 0, 4, 3, 4, 7, 8, 2, 6, 0, 8, 6, 9, 5, 6, 5, 2, 1, 7, 3, 9, 1, 3. Note that these digits are not appropriate for cryptographic purposes, as the value of each can be derived from its predecessor in the digit-stream.
Read more about this topic: Sophie Germain Prime
Famous quotes containing the words application, number and/or generation:
“It is known that Whistler when asked how long it took him to paint one of his nocturnes answered: All of my life. With the same rigor he could have said that all of the centuries that preceded the moment when he painted were necessary. From that correct application of the law of causality it follows that the slightest event presupposes the inconceivable universe and, conversely, that the universe needs even the slightest of events.”
—Jorge Luis Borges (18991986)
“States strong enough to do good are but few.
Their number would seem limited to three.”
—Robert Frost (18741963)
“There is such a thing as food and such a thing as poison. But the damage done by those who pass off poison as food is far less than that done by those who generation after generation convince people that food is poison.”
—Paul Goodman (19111972)