Solid Angle - Definition and Properties

Definition and Properties

An object's solid angle is equal to the area of the segment of a unit sphere, centered at the angle's vertex, that the object covers. A solid angle equals the area of a segment of unit sphere in the same way a planar angle equals the length of an arc of a unit circle.

The solid angle of a sphere measured from a point in its interior is 4π sr, and the solid angle subtended at the center of a cube by one of its faces is one-sixth of that, or 2π/3 sr. Solid angles can also be measured in square degrees (1 sr = (180/π)2 square degree) or in fractions of the sphere (i.e., fractional area), 1 sr = 1/4π fractional area.

In spherical coordinates, there is a simple formula as

The solid angle for an arbitrary oriented surface S subtended at a point P is equal to the solid angle of the projection of the surface S to the unit sphere with center P, which can be calculated as the surface integral:

where is the vector position of an infinitesimal area of surface with respect to point P and where represents the unit vector normal to . Even if the projection on the unit sphere to the surface S is not isomorphic, the multiple folds are correctly considered according to the surface orientation described by the sign of the scalar product .

Read more about this topic:  Solid Angle

Famous quotes containing the words definition and/or properties:

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)