Soldering of A Fibre Bundle
Let M be a smooth manifold, and G a Lie group, and let E be a smooth fibre bundle over M with structure group G. Suppose that G acts transitively on the typical fibre F of E, and that dim F = dim M. A soldering of E to M consists of the following data:
- A distinguished section o : M → E.
- A linear isomorphism of vector bundles θ : TM → o−1VE from the tangent bundle of M to the pullback of the vertical bundle of E along the distinguished section.
In particular, this latter condition can be interpreted as saying that θ determines a linear isomorphism
from the tangent space of M at x to the (vertical) tangent space of the fibre at the point determined by the distinguished section. The form θ is called the solder form for the soldering.
Read more about this topic: Solder Form
Famous quotes containing the words fibre and/or bundle:
“One of the oddest features of western Christianized culture is its ready acceptance of the myth of the stable family and the happy marriage. We have been taught to accept the myth not as an heroic ideal, something good, brave, and nearly impossible to fulfil, but as the very fibre of normal life. Given most families and most marriages, the belief seems admirable but foolhardy.”
—Jonathan Raban (b. 1942)
“There is Lowell, whos striving Parnassus to climb
With a whole bale of isms tied together with rhyme,
He might get on alone, spite of brambles and boulders,
But he cant with that bundle he has on his shoulders,
The top of the hill he will neer come nigh reaching
Till he learns the distinction twixt singing and preaching;”
—James Russell Lowell (18191891)