Sail Configurations
Parachutes have very low mass, but a parachute is not a workable configuration for a solar sail. Analysis shows that a parachute configuration would collapse from the forces exerted by shroud lines, since radiation pressure does not behave like aerodynamic pressure, and would not act to keep the parachute open.
Eric Drexler proposed very high thrust-to-mass solar sails, and made prototypes of the sail material. His sail would use panels of thin aluminium film (30 to 100 nanometres thick) supported by a tensile structure. The sail would rotate and would have to be continually under thrust. He made and handled samples of the film in the laboratory, but the material was too delicate to survive folding, launch, and deployment. The design planned to rely on space-based production of the film panels, joining them to a deployable tension structure. Sails in this class would offer high area per unit mass and hence accelerations up to "fifty times higher" than designs based on deployable plastic films.
The highest thrust-to-mass designs for ground-assembled deployable structures are square sails with the masts and guy lines on the dark side of the sail. Usually there are four masts that spread the corners of the sail, and a mast in the center to hold guy-wires. One of the largest advantages is that there are no hot spots in the rigging from wrinkling or bagging, and the sail protects the structure from the Sun. This form can therefore go close to the Sun for maximum thrust. Most designs steer with small sails on the ends of the spars.
In the 1970s JPL studied many rotating blade and ring sails for a mission to rendezvous with Halley's Comet. The intention was to stiffen the structures using angular momentum, eliminating the need for struts, and saving mass. In all cases, surprisingly large amounts of tensile strength were needed to cope with dynamic loads. Weaker sails would ripple or oscillate when the sail's attitude changed, and the oscillations would add and cause structural failure. The difference in the thrust-to-mass ratio between practical designs was almost nil, and the static designs were easier to control.
JPL's reference design was called the "heliogyro." It had plastic-film blades deployed from rollers and held out by centrifugal forces as it rotated. The spacecraft's attitude and direction were to be completely controlled by changing the angle of the blades in various ways, similar to the cyclic and collective pitch of a helicopter. Although the design had no mass advantage over a square sail, it remained attractive because the method of deploying the sail was simpler than a strut-based design.
JPL also investigated "ring sails" (Spinning Disk Sail in the above diagram), panels attached to the edge of a rotating spacecraft. The panels would have slight gaps, about one to five percent of the total area. Lines would connect the edge of one sail to the other. Masses in the middles of these lines would pull the sails taut against the coning caused by the radiation pressure. JPL researchers said that this might be an attractive sail design for large manned structures. The inner ring, in particular, might be made to have artificial gravity roughly equal to the gravity on the surface of Mars.
A solar sail can serve a dual function as a high-gain antenna. Designs differ, but most modify the metallization pattern to create a holographic monochromatic lens or mirror in the radio frequencies of interest, including visible light.
Pekka Janhunen from FMI has invented a type of solar sail called the electric solar wind sail. Mechanically it has little in common with the traditional solar sail design. The sails are replaced with straightened conducting tethers (wires) placed radially around the host ship. The wires are electrically charged to create an electric field around the wires. The electric field extends a few tens of metres into the plasma of the surrounding solar wind. The solar electrons are reflected by the electric field (like the photons on a traditional solar sail). The radius of the sail is from the electric field rather than the actual wire itself, making the sail lighter. The craft can also be steered by regulating the electric charge of the wires. A practical electric sail would have 50-100 straightened wires with a length of about 20 km each.
A magnetic sail would also employ the solar wind. However, the magnetic field deflects the electrically charged particles in the wind. It uses wire loops, and runs a static current through them instead of applying a static voltage.
All these designs maneuver, though the mechanisms are different. Magnetic sails bend the path of the charged protons that are in the solar wind. By changing the sails' attitudes, and the size of the magnetic fields, they can change the amount and direction of the thrust. Electric solar wind sails can adjust their electrostatic fields and sail attitudes.
Read more about this topic: Solar Sail
Famous quotes containing the word sail:
“Ships at a distance have every mans wish on board. For some they come in with the tide. For others they sail forever on the same horizon, never out of sight, never landing until the Watcher turns his away in resignation, his dreams mocked to death by Time. That is the life of men. Now, women forget all those things they dont want to remember, and remember everything they dont want to forget. The dream is the truth. Then they act and do things accordingly.”
—Zora Neale Hurston (18911960)