Solar Power - Energy Storage Methods

Energy Storage Methods

Solar energy is not available at night, making energy storage an important issue in order to provide the continuous availability of energy. Both wind power and solar power are intermittent energy sources, meaning that all available output must be taken when it is available and either stored for when it can be used, or transported, over transmission lines, to where it can be used. Wind power and solar power tend to be somewhat complementary, as there tends to be more wind in the winter and more sun in the summer, but on days with no sun and no wind the difference needs to be made up in some manner. The Institute for Solar Energy Supply Technology of the University of Kassel pilot-tested a combined power plant linking solar, wind, biogas and hydrostorage to provide load-following power around the clock, entirely from renewable sources.

Solar energy can be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store 1.44 TJ in its 68 m³ storage tank, enough to provide full output for close to 39 hours, with an efficiency of about 99%.

Off-grid PV systems have traditionally used rechargeable batteries to store excess electricity. With grid-tied systems, excess electricity can be sent to the transmission grid. Net metering programs give these systems a credit for the electricity they deliver to the grid. This credit offsets electricity provided from the grid when the system cannot meet demand, effectively using the grid as a storage mechanism. Credits are normally rolled over from month to month and any remaining surplus settled annually.

Pumped-storage hydroelectricity stores energy in the form of water pumped when surplus electricity is available, from a lower elevation reservoir to a higher elevation one. The energy is recovered when demand is high by releasing the water: the pump becomes a turbine, and the motor a hydroelectric power generator.

Artificial photosynthesis involves the use of nanotechnology to store solar electromagnetic energy in chemical bonds, by splitting water to produce hydrogen fuel or then combining with carbon dioxide to make biopolymers such as methanol. Many large national and regional research projects on artificial photosynthesis are now trying to develop techniques integrating improved light capture, quantum coherence methods of electron transfer and cheap catalytic materials that operate under a variety of atmospheric conditions. Senior researchers in the field have made the public policy case for a Global Project on Artificial Photosynthesis to address critical energy security and environmental sustainability issues.

Solar power is seasonal, particularly in northern/southern climates, away from the equator, suggesting a need for long term seasonal storage in a medium such as hydrogen. The storage requirements vary and in some cases can be met with biomass.

Read more about this topic:  Solar Power

Famous quotes containing the words energy, storage and/or methods:

    Just as we are learning to value and conserve the air we breathe, the water we drink, the energy we use, we must learn to value and conserve our capacity for nurture. Otherwise, in the name of human potential we will slowly but surely erode the source of our humanity.
    Elaine Heffner (20th century)

    Many of our houses, both public and private, with their almost innumerable apartments, their huge halls and their cellars for the storage of wines and other munitions of peace, appear to me extravagantly large for their inhabitants. They are so vast and magnificent that the latter seem to be only vermin which infest them.
    Henry David Thoreau (1817–1862)

    The methods by which a trade union can alone act, are necessarily destructive; its organization is necessarily tyrannical.
    Henry George (1839–1897)