Software Bug - Prevention

Prevention

The software industry has put much effort into finding methods for preventing programmers from inadvertently introducing bugs while writing software. These include:

Programming style
While typos in the program code are often caught by the compiler, a bug usually appears when the programmer makes a logic error. Various innovations in programming style and defensive programming are designed to make these bugs less likely, or easier to spot. In some programming languages, so-called typos, especially of symbols or logical/mathematical operators, actually represent logic errors, since the mistyped constructs are accepted by the compiler with a meaning other than that which the programmer intended.
Programming techniques
Bugs often create inconsistencies in the internal data of a running program. Programs can be written to check the consistency of their own internal data while running. If an inconsistency is encountered, the program can immediately halt, so that the bug can be located and fixed. Alternatively, the program can simply inform the user, attempt to correct the inconsistency, and continue running.
Development methodologies
There are several schemes for managing programmer activity, so that fewer bugs are produced. Many of these fall under the discipline of software engineering (which addresses software design issues as well). For example, formal program specifications are used to state the exact behavior of programs, so that design bugs can be eliminated. Unfortunately, formal specifications are impractical or impossible for anything but the shortest programs, because of problems of combinatorial explosion and indeterminacy.
Programming language support
Programming languages often include features which help programmers prevent bugs, such as static type systems, restricted name spaces and modular programming, among others. For example, when a programmer writes (pseudocode) LET REAL_VALUE PI = "THREE AND A BIT", although this may be syntactically correct, the code fails a type check. Depending on the language and implementation, this may be caught by the compiler or at run-time. In addition, many recently invented languages have deliberately excluded features which can easily lead to bugs, at the expense of making code slower than it need be: the general principle being that, because of Moore's law, computers get faster and software engineers get slower; it is almost always better to write simpler, slower code than "clever", inscrutable code, especially considering that maintenance cost is considerable. For example, the Java programming language does not support pointer arithmetic; implementations of some languages such as Pascal and scripting languages often have runtime bounds checking of arrays, at least in a debugging build.
Code analysis
Tools for code analysis help developers by inspecting the program text beyond the compiler's capabilities to spot potential problems. Although in general the problem of finding all programming errors given a specification is not solvable (see halting problem), these tools exploit the fact that human programmers tend to make the same kinds of mistakes when writing software.
Instrumentation
Tools to monitor the performance of the software as it is running, either specifically to find problems such as bottlenecks or to give assurance as to correct working, may be embedded in the code explicitly (perhaps as simple as a statement saying PRINT "I AM HERE"), or provided as tools. It is often a surprise to find where most of the time is taken by a piece of code, and this removal of assumptions might cause the code to be rewritten.

Read more about this topic:  Software Bug

Famous quotes containing the word prevention:

    ... if this world were anything near what it should be there would be no more need of a Book Week than there would be a of a Society for the Prevention of Cruelty to Children.
    Dorothy Parker (1893–1967)