Snake Venom - Chemistry

Chemistry

Charles Lucien Bonaparte, the son of Lucien Bonaparte, younger brother of Napoleon Bonaparte, was the first to establish the proteinaceous nature of snake venom in 1843.

Proteins constitute 90-95% of venom's dry weight and they are responsible for almost all of its biological effects. Among hundreds, even thousands of proteins found in venom, there are toxins, neurotoxins in particular, as well as nontoxic proteins (which also have pharmacological properties), and many enzymes, especially hydrolytic ones. Enzymes (molecular weight 13-150 KDa) make-up 80-90% of viperid and 25-70% of elapid venoms: digestive hydrolases, L-amino acid oxidase, phospholipases, thrombin-like pro-coagulant, and kallikrein-like serine proteases and metalloproteinases (hemorrhagins), which damage vascular endothelium. Polypeptide toxins (molecular weight 5-10 KDa) include cytotoxins, cardiotoxins, and postsynaptic neurotoxins (such as α-bungarotoxin and α-Cobratoxin), which bind to acetylcholine receptors at neuromuscular junctions. Compounds with low molecular weight (up to 1.5 KDa) include metals, peptides, lipids, nucleosides, carbohydrates, amines, and oligopeptides, which inhibit angiotensin converting enzyme (ACE) and potentiate bradykinin (BPP). Inter- and intra-species variation in venom chemical composition is geographical and ontogenic. Phosphodiesterases interfere with the prey's cardiac system, mainly to lower the blood pressure. Phospholipase A2 causes hemolysis by lysing the phospholipid cell membranes of red blood cells. Amino acid oxidases and proteases are used for digestion. Amino acid oxidase also triggers some other enzymes and is responsible for the yellow colour of the venom of some species. Hyaluronidase increases tissue permeability to accelerate absorption of other enzymes into tissues. Some snake venoms carry fasciculins, like the mambas (Dendroaspis), which inhibit cholinesterase to make the prey lose muscle control.

Main Enzymes of Snake Venom
Type Name Origin
Oxydoreductases dehydrogenase lactate Elapidae
L-amino-acid oxidase All species
Catalase All species
Transferases Alanine amino transferase
Hydrolases Phospholipase A2 All species
Lysophospholipase Elapidae, Viperidae
Acetylcholinesterase Elapidae
Alkaline phosphatase Bothrops atrox
Acid phosphatase Deinagkistrodon acutus
5'-Nucleotidase All species
Phosphodiesterase All species
Deoxyribonuclease All species
Ribonuclease 1 All species
Adenosine triphosphatase All species
Amylase All species
Hyaluronidase All species
NAD-Nucleotidase All species
Kininogenase Viperidae
Factor-X activator Viperidae, Crotalinae
Heparinase Crotalinae
α-Fibrinogenase Viperidae, Crotalinae
β-Fibrinogenase Viperidae, Crotalinae
α-β-Fibrinogenase Bitis gabonica
Fibrinolytic enzyme Crotalinae
Prothrombin activator Crotalinae
Collagenase Viperidae
Elastase Viperidae
Lyases Glucosamine ammonium lyase

Snake toxins vary greatly in their functions. Two major classifications of toxins found in snake venoms include neurotoxins (mostly found in elapids) and hemotoxins (mostly found in viperids). However, there are exceptions - an African spitting cobra Naja nigricollis's venom consists mainly of hemotoxins, while the Mojave rattlesnake's venom is primarily neurotoxic. However, there are numerous other different types of toxins which both elapids or viperids may carry.

α-neurotoxins α-Bungarotoxin, α-toxin, erabutoxin, cobratoxin
β-neurotoxins Notexin, ammodytoxin, β-Bungarotoxin, crotoxin, taipoxin
κ-Toxins κ-Toxin
Dendrotoxins Dendrotoxin, toxins I and K
Cardiotoxins y-Toxin, cardiotoxin, cytotoxin
Myotoxins Myotoxin-a, crotamine
Sarafotoxins Sarafotoxins a, b, and c
Hemorrhagins Phospholipase A2, mucrotoxin A, hemorrhagic toxins a, b, c..., HT1, HT2

Read more about this topic:  Snake Venom

Famous quotes containing the word chemistry:

    Science with its retorts would have put me to sleep; it was the opportunity to be ignorant that I improved. It suggested to me that there was something to be seen if one had eyes. It made a believer of me more than before. I believed that the woods were not tenantless, but choke-full of honest spirits as good as myself any day,—not an empty chamber, in which chemistry was left to work alone, but an inhabited house,—and for a few moments I enjoyed fellowship with them.
    Henry David Thoreau (1817–1862)

    If thought makes free, so does the moral sentiment. The mixtures of spiritual chemistry refuse to be analyzed.
    Ralph Waldo Emerson (1803–1882)