Small-angle Neutron Scattering - SANS in Biology

SANS in Biology

A crucial feature of SANS that makes it particularly useful for the biological sciences is the special behavior of hydrogen, especially compared to deuterium. In biological systems hydrogen can be exchanged with deuterium which usually has minimal effect on the sample but has dramatic effects on the scattering.

The technique of contrast variation (or contrast matching) relies on the differential scatter of hydrogen vs. deuterium. Figure 1 shows the scattering length density for water and various biological macromolecules as a function of the deuterium concentration. (Adapted from.) Biological samples are usually dissolved in water, so their hydrogens are able to exchange with any deuteriums in the solvent. Since the overall scatter of a molecule depends on the scatter of all its components, this will depend on the ratio of hydrogen to deuterium in the molecule. At certain ratios of H2O to D2O, called match points, the scatter from the molecule will equal that of the solvent, and thus be eliminated when the scatter from the buffer is subtracted from the data. For instance the match point for proteins is typically around 40-45% D2O, and at that concentration the scatter from the protein will be indistinguishable from that of the buffer.

To use contrast variation, different components of a system must scatter differently. This can be based on inherent scattering differences, e.g. DNA vs. protein, or arise from differentially labeled components, e.g. having one protein in a complex deuterated while the rest are protonated. In terms of modelling, small-angle X-ray and neutron scattering data can be combined with the program MONSA. An example in which SAXS, SANS and EM data has been used to build an atomic model of a large multi-subunit enzyme has recently been published. For some examples of this method see.

Read more about this topic:  Small-angle Neutron Scattering

Famous quotes containing the words sans and/or biology:

    Last scene of all,
    That ends this strange eventful history,
    Is second childishness, and mere oblivion,
    Sans teeth, sans eyes, sans taste, sans every thing.
    William Shakespeare (1564–1616)

    The “control of nature” is a phrase conceived in arrogance, born of the Neanderthal age of biology and the convenience of man.
    Rachel Carson (1907–1964)