Skew Flats in Higher Dimensions
In higher dimensional space, a flat of dimension k is referred to as a k-flat. Thus, a line may also be called a 1-flat.
Generalizing the concept of skew lines to d-dimensional space, an i-flat and a j-flat may be skew if i + j < d. As with lines in 3-space, skew flats are those that are neither parallel nor intersect.
In affine d-space, two flats of any dimension may be parallel. However, in projective space, parallelism does not exist; two flats must either intersect or be skew. Let I be the set of points on an i-flat, and let J be the set of points on a j-flat. In projective d-space, if i + j ≥ d then the intersection of I and J must contain a (i+j−d)-flat. (A 0-flat is a point.)
In either geometry, if I and J intersect at a k-flat, for k ≥ 0, then the points of I ∪ J determine a (i+j−k)-flat.
Read more about this topic: Skew Lines
Famous quotes containing the words flats, higher and/or dimensions:
“I have a Vision of the Future, chum.
The workers flats in fields of soya beans
Tower up like silver pencils, score on score.”
—Sir John Betjeman (19061984)
“Wherever a man separates from the multitude, and goes his own way in this mood, there indeed is a fork in the road, though ordinary travelers may see only a gap in the paling. His solitary path across lots will turn out the higher way of the two.”
—Henry David Thoreau (18171862)
“It seems to me that we do not know nearly enough about ourselves; that we do not often enough wonder if our lives, or some events and times in our lives, may not be analogues or metaphors or echoes of evolvements and happenings going on in other people?or animals?even forests or oceans or rocks?in this world of ours or, even, in worlds or dimensions elsewhere.”
—Doris Lessing (b. 1919)