History
The singular value decomposition was originally developed by differential geometers, who wished to determine whether a real bilinear form could be made equal to another by independent orthogonal transformations of the two spaces it acts on. Eugenio Beltrami and Camille Jordan discovered independently, in 1873 and 1874 respectively, that the singular values of the bilinear forms, represented as a matrix, form a complete set of invariants for bilinear forms under orthogonal substitutions. James Joseph Sylvester also arrived at the singular value decomposition for real square matrices in 1889, apparently independent of both Beltrami and Jordan. Sylvester called the singular values the canonical multipliers of the matrix A. The fourth mathematician to discover the singular value decomposition independently is Autonne in 1915, who arrived at it via the polar decomposition. The first proof of the singular value decomposition for rectangular and complex matrices seems to be by Carl Eckart and Gale Young in 1936; they saw it as a generalization of the principal axis transformation for Hermitian matrices.
In 1907, Erhard Schmidt defined an analog of singular values for integral operators (which are compact, under some weak technical assumptions); it seems he was unaware of the parallel work on singular values of finite matrices. This theory was further developed by Émile Picard in 1910, who is the first to call the numbers singular values (or rather, valeurs singulières).
Practical methods for computing the SVD date back to Kogbetliantz in 1954, 1955 and Hestenes in 1958. resembling closely the Jacobi eigenvalue algorithm, which uses plane rotations or Givens rotations. However, these were replaced by the method of Gene Golub and William Kahan published in 1965, which uses Householder transformations or reflections. In 1970, Golub and Christian Reinsch published a variant of the Golub/Kahan algorithm that is still the one most-used today.
Read more about this topic: Singular Value Decomposition
Famous quotes containing the word history:
“He wrote in prison, not a History of the World, like Raleigh, but an American book which I think will live longer than that. I do not know of such words, uttered under such circumstances, and so copiously withal, in Roman or English or any history.”
—Henry David Thoreau (18171862)
“In nature, all is useful, all is beautiful. It is therefore beautiful, because it is alive, moving, reproductive; it is therefore useful, because it is symmetrical and fair. Beauty will not come at the call of a legislature, nor will it repeat in England or America its history in Greece. It will come, as always, unannounced, and spring up between the feet of brave and earnest men.”
—Ralph Waldo Emerson (18031882)
“The principle that human nature, in its psychological aspects, is nothing more than a product of history and given social relations removes all barriers to coercion and manipulation by the powerful.”
—Noam Chomsky (b. 1928)