Existence
An eigenvalue λ of a matrix is characterized by the algebraic relation M u = λ u. When M is Hermitian, a variational characterization is also available. Let M be a real n × n symmetric matrix. Define f :Rn → R by f(x) = xT M x. By the extreme value theorem, this continuous function attains a maximum at some u when restricted to the closed unit sphere {||x|| ≤ 1}. By the Lagrange multipliers theorem, u necessarily satisfies
where the nabla symbol, is the del operator.
A short calculation shows the above leads to M u = λ u (symmetry of M is needed here). Therefore λ is the largest eigenvalue of M. The same calculation performed on the orthogonal complement of u gives the next largest eigenvalue and so on. The complex Hermitian case is similar; there f(x) = x* M x is a real-valued function of 2n real variables.
Singular values are similar in that they can be described algebraically or from variational principles. Although, unlike the eigenvalue case, Hermiticity, or symmetry, of M is no longer required.
This section gives these two arguments for existence of singular value decomposition.
Read more about this topic: Singular Value Decomposition
Famous quotes containing the word existence:
“Money is to my social existence what health is to my body.”
—Mason Cooley (b. 1927)
“No cause is left but the most ancient of all, the one, in fact, that from the beginning of our history has determined the very existence of politics, the cause of freedom versus tyranny.”
—Hannah Arendt (19061975)
“However incoherent a human existence may be, human unity is not bothered by it.”
—Charles Baudelaire (18211867)