Demodulation
The front end of an SSB receiver is similar to that of an AM or FM receiver, consisting of a superheterodyne RF front end that produces a frequency-shifted version of the radio frequency (RF) signal within a standard intermediate frequency (IF) band.
To recover the original signal from the IF SSB signal, the single sideband must be frequency-shifted down to its original range of baseband frequencies, by using a product detector which mixes it with the output of a beat frequency oscillator (BFO). In other words, it is just another stage of heterodyning.(mixing down to base band). For this to work, the BFO frequency must be exactly adjusted. If the BFO frequency is off, the output signal will be frequency-shifted (up or down), making speech sound strange and "Donald Duck"-like, or unintelligible. For audio communications, there is a common agreement about the BFO oscillator shift of 1.7 kHz. A voice signal is sensitive to about 50 Hz shift, with up to 100 Hz still bearable. Some receivers use a carrier recovery system, which attempts to automatically lock on to the exact IF frequency. The carrier recovery doesn't solve the frequency shift. It gives better S/N ratio on the detector output.
As an example, consider an IF SSB signal centered at frequency = 45000 Hz. The baseband frequency it needs to be shifted to is = 2000 Hz. The BFO output waveform is . When the signal is multiplied by (aka 'heterodyned with') the BFO waveform, it shifts the signal to and to, which is known as the beat frequency or image frequency. The objective is to choose an that results in = 2000 Hz. (The unwanted components at can be removed by a lowpass filter (for which an output transducer or the human ear may serve)).
Note that there are two choices for : 43000 Hz and 47000 Hz, called low-side and high-side injection. With high-side injection, the spectral components that were distributed around 45000 Hz will be distributed around 2000 Hz in the reverse order, also known as an inverted spectrum. That is in fact desirable when the IF spectrum is also inverted, because the BFO inversion restores the proper relationships. One reason for that is when the IF spectrum is the output of an inverting stage in the receiver. Another reason is when the SSB signal is actually a lower sideband, instead of an upper sideband. But if both reasons are true, then the IF spectrum in not inverted, and the non-inverting BFO (43000 Hz) should be used.
If is off by a small amount, then the beat frequency is not exactly, which can lead to the speech distortion mentioned earlier.
Read more about this topic: Single-sideband Modulation