Simpson's Paradox

In probability and statistics, Simpson's paradox (or the Yule–Simpson effect) is a paradox in which a correlation present in different groups is reversed when the groups are combined. This result is often encountered in social-science and medical-science statistics, and is particularly confounding when frequency data are unduly given causal interpretations. Simpson's Paradox disappears when causal relations are brought into consideration.

Though it is mostly unknown to laypeople, Simpson's Paradox is well known to statisticians, and it is described in a few introductory statistics books. Many statisticians believe that the mainstream public should be informed of the counter-intuitive results in statistics such as Simpson's paradox.

Edward H. Simpson first described this phenomenon in a technical paper in 1951, but the statisticians Karl Pearson, et al., in 1899, and Udny Yule, in 1903, had mentioned similar effects earlier. The name Simpson's paradox was introduced by Colin R. Blyth in 1972. Since Edward Simpson did not actually discover this statistical paradox (a fact explained by Stigler's law of eponymy), some writers, instead, have used the impersonal names reversal paradox and amalgamation paradox in referring to what is now called Simpson's Paradox and the Yule-Simpson effect.

Read more about Simpson's Paradox:  Description, Implications For Decision Making, Psychology, Probability, Related Concepts

Famous quotes containing the words simpson and/or paradox:

    If you have any information or evidence regarding the O.J. Simpson case, press 2 now. If you are an expert in fields relating to the O.J. Simpson case and would like to offer your services, press 3 now. If you would like the address where you can send a letter of support to O.J. Simpson, press 1 now. If you are seeking legal representation from the law offices of Robert L. Shapiro, press 4 now.
    Advertisement. Aired August 8, 1994 by Tom Snyder on TV station CNBC. Chicago Sun Times, p. 11 (July 24, 1994)

    When a paradox is widely believed, it is no longer recognized as a paradox.
    Mason Cooley (b. 1927)