Computational Problems
In computational geometry, several important computational tasks involve inputs in the form of a simple polygon; in each of these problems, the distinction between the interior and exterior is crucial in the problem definition.
- Point in polygon testing involves determining, for a simple polygon P and a query point q, whether q lies interior to P.
- Simple formulae are known for computing polygon area; that is, the area of the interior of the polygon.
- Polygon triangulation: dividing a simple polygon into triangles. Although convex polygons are easy to triangulate, triangulating a general simple polygon is more difficult because we have to avoid adding edges that cross outside the polygon. Nevertheless, Bernard Chazelle showed in 1991 that any simple polygon with n vertices can be triangulated in Θ(n) time, which is optimal. The same algorithm may also be used for determining whether a closed polygonal chain forms a simple polygon.
- Polygon union: finding the simple polygon or polygons containing the area inside either of two simple polygons
- Polygon intersection: finding the simple polygon or polygons containing the area inside both of two simple polygons
- The convex hull of a simple polygon may be computed more efficiently than the complex hull of other types of inputs, such as the convex hull of a point set.
- Voronoi diagram of a simple polygon
- Medial axis/topological skeleton/straight skeleton of a simple polygon
- Offset curve of a simple polygon
- Polygon resizing
- Minkowski sum for simple polygons
Read more about this topic: Simple Polygon
Famous quotes containing the word problems:
“In many ways, life becomes simpler [for young adults]. . . . We are expected to solve only a finite number of problems within a limited range of possible solutions. . . . Its a mental vacation compared with figuring out who we are, what we believe, what were going to do with our talents, how were going to solve the social problems of the globe . . .and what the perfect way to raise our children will be.”
—Roger Gould (20th century)
Related Phrases
Related Words