Basic Properties of Simple Modules
The simple modules are precisely the modules of length 1; this is a reformulation of the definition.
Every simple module is indecomposable, but the converse is in general not true.
Every simple module is cyclic, that is it is generated by one element.
Not every module has a simple submodule; consider for instance the Z-module Z in light of the first example above.
Let M and N be (left or right) modules over the same ring, and let f : M → N be a module homomorphism. If M is simple, then f is either the zero homomorphism or injective because the kernel of f is a submodule of M. If N is simple, then f is either the zero homomorphism or surjective because the image of f is a submodule of N. If M = N, then f is an endomorphism of M, and if M is simple, then the prior two statements imply that f is either the zero homomorphism or an isomorphism. Consequently the endomorphism ring of any simple module is a division ring. This result is known as Schur's lemma.
The converse of Schur's lemma is not true in general. For example, the Z-module Q is not simple, but its endomorphism ring is isomorphic to the field Q.
Read more about this topic: Simple Module
Famous quotes containing the words basic, properties and/or simple:
“The basic Female body comes with the following accessories: garter belt, panti-girdle, crinoline, camisole, bustle, brassiere, stomacher, chemise, virgin zone, spike heels, nose ring, veil, kid gloves, fishnet stockings, fichu, bandeau, Merry Widow, weepers, chokers, barrettes, bangles, beads, lorgnette, feather boa, basic black, compact, Lycra stretch one-piece with modesty panel, designer peignoir, flannel nightie, lace teddy, bed, head.”
—Margaret Atwood (b. 1939)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“You think a wooden animal
is a simple thing;
its not.”
—Hilda Doolittle (18861961)