In mechanics and physics, simple harmonic motion is a type of periodic motion where the restoring force is directly proportional to the displacement. It can serve as a mathematical model of a variety of motions, such as the oscillation of a spring. In addition, other phenomena can be approximated by simple harmonic motion, including the motion of a simple pendulum as well as molecular vibration. Simple harmonic motion is typified by the motion of a mass on a spring when it is subject to the linear elastic restoring force given by Hooke's Law. The motion is sinusoidal in time and demonstrates a single resonant frequency. In order for simple harmonic motion to take place, the net force of the object at the end of the pendulum must be proportional to the displacement.
Simple harmonic motion provides a basis for the characterization of more complicated motions through the techniques of Fourier analysis.
Read more about Simple Harmonic Motion: Introduction, Dynamics of Simple Harmonic Motion, Energy of Simple Harmonic Motion
Famous quotes containing the words simple, harmonic and/or motion:
“A more simple and natural man it would be hard to find. Vice and disease, which cast such a sombre moral hue over the world, seemed to have hardly any existence for him.”
—Henry David Thoreau (18171862)
“For decades child development experts have erroneously directed parents to sing with one voice, a unison chorus of values, politics, disciplinary and loving styles. But duets have greater harmonic possibilities and are more interesting to listen to, so long as cacophony or dissonance remains at acceptable levels.”
—Kyle D. Pruett (20th century)
“I have seen in this revolution a circular motion of the sovereign power through two usurpers, father and son, to the late King to this his son. For ... it moved from King Charles I to the Long Parliament; from thence to the Rump; from the Rump to Oliver Cromwell; and then back again from Richard Cromwell to the Rump; then to the Long Parliament; and thence to King Charles, where long may it remain.”
—Thomas Hobbes (15791688)