Similarity (geometry) - Similarity in Euclidean Space

Similarity in Euclidean Space

One of the meanings of the terms similarity and similarity transformation (also called dilation) of a Euclidean space is a function f from the space into itself that multiplies all distances by the same positive scalar r, so that for any two points x and y we have

where "d(x,y)" is the Euclidean distance from x to y. Two sets are called similar if one is the image of the other under such a similarity.

A special case is a homothetic transformation or central similarity: it neither involves rotation nor taking the mirror image. A similarity is a composition of a homothety and an isometry. Therefore, in general Euclidean spaces every similarity is an affine transformation, because the Euclidean group E(n) is a subgroup of the affine group.

Viewing the complex plane as a 2-dimensional space over the reals, the 2D similarity transformations expressed in terms of complex arithmetic are and where a and b are complex numbers, a ≠ 0.

Read more about this topic:  Similarity (geometry)

Famous quotes containing the words similarity and/or space:

    Incompatibility. In matrimony a similarity of tastes, particularly the taste for domination.
    Ambrose Bierce (1842–1914)

    The within, all that inner space one never sees, the brain and the heart and other caverns where thought and feeling dance their sabbath.
    Samuel Beckett (1906–1989)