Signed Graph - Examples

Examples

  • The complete signed graph on n vertices with loops, denoted by ±Kno, has every possible positive and negative edge including negative loops, but no positive loops. Its edges correspond to the roots of the root system Cn; the column of an edge in the incidence matrix (see below) is the vector representing the root.
  • The complete signed graph with half-edges, ±Kn', is ±Kn with a half-edge at every vertex. Its edges correspond to the roots of the root system Bn, half-edges corresponding to the unit basis vectors.
  • The complete signed link graph, ±Kn, is the same but without loops. Its edges correspond to the roots of the root system Dn.
  • An all-positive signed graph has only positive edges. If the underlying graph is G, the all-positive signing is written +G.
  • An all-negative signed graph has only negative edges. It is balanced if and only if it is bipartite because a circle is positive if and only if it has even length. An all-negative graph with underlying graph G is written −G.
  • A signed complete graph has as underlying graph G the ordinary complete graph Kn. It may have any signs. Signed complete graphs are equivalent to two-graphs, which are of value in finite group theory. A two-graph can be defined as the class of vertex sets of negative triangles in a signed complete graph.

Read more about this topic:  Signed Graph

Famous quotes containing the word examples:

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)

    There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring ‘em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.
    Bernard Mandeville (1670–1733)

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)