Examples
Let F be a totally real number field and D a quaternion division algebra over F. The multiplicative group D× gives rise to a canonical Shimura variety. Its dimension d is the number of infinite places over which D splits. In particular, if d = 1 (for example, if F = Q and D ⊗ R ≅ M2(R)), fixing a sufficiently small arithmetic subgroup of D×, one gets a Shimura curve, and curves arising from this construction are already compact (i.e. projective).
Some examples of Shimura curves with explicitly known equations are given by the Hurwitz curves of low genus:
- Klein quartic (genus 3)
- Macbeath surface (genus 7)
- First Hurwitz triplet (genus 14)
and by the Fermat curve of degree 7.
Other examples of Shimura varieties include Picard modular surfaces and Hilbert–Blumenthal varieties.
Read more about this topic: Shimura Variety
Famous quotes containing the word examples:
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)