Canonical Models and Special Points
Each Shimura variety can be defined over a canonical number field E called the reflex field. This important result due to Shimura shows that Shimura varieties, which a priori are only complex manifolds, have an algebraic field of definition and, therefore, arithmetical significance. It forms the starting point in his formulation of the reciprocity law, where an important role is played by certain arithmetically defined special points.
The qualitative nature of the Zariski closure of sets of special points on a Shimura variety is described by the André-Oort conjecture. Conditional results have been obtained on this conjecture, assuming a Generalized Riemann Hypothesis.
Read more about this topic: Shimura Variety
Famous quotes containing the words canonical, models, special and/or points:
“If God bestowed immortality on every man then when he made him, and he made many to whom he never purposed to give his saving grace, what did his Lordship think that God gave any man immortality with purpose only to make him capable of immortal torments? It is a hard saying, and I think cannot piously be believed. I am sure it can never be proved by the canonical Scripture.”
—Thomas Hobbes (15791688)
“The greatest and truest models for all orators ... is Demosthenes. One who has not studied deeply and constantly all the great speeches of the great Athenian, is not prepared to speak in public. Only as the constant companion of Demosthenes, Burke, Fox, Canning and Webster, can we hope to become orators.”
—Woodrow Wilson (18561924)
“It is a maxim among these lawyers, that whatever hath been done before, may legally be done again: and therefore they take special care to record all the decisions formerly made against common justice and the general reason of mankind.”
—Jonathan Swift (16671745)
“When our relatives are at home, we have to think of all their good points or it would be impossible to endure them. But when they are away, we console ourselves for their absence by dwelling on their vices.”
—George Bernard Shaw (18561950)