Series of Functions
A series of real- or complex-valued functions
converges pointwise on a set E, if the series converges for each x in E as an ordinary series of real or complex numbers. Equivalently, the partial sums
converge to ƒ(x) as N → ∞ for each x ∈ E.
A stronger notion of convergence of a series of functions is called uniform convergence. The series converges uniformly if it converges pointwise to the function ƒ(x), and the error in approximating the limit by the Nth partial sum,
can be made minimal independently of x by choosing a sufficiently large N.
Uniform convergence is desirable for a series because many properties of the terms of the series are then retained by the limit. For example, if a series of continuous functions converges uniformly, then the limit function is also continuous. Similarly, if the ƒn are integrable on a closed and bounded interval I and converge uniformly, then the series is also integrable on I and can be integrated term-by-term. Tests for uniform convergence include the Weierstrass' M-test, Abel's uniform convergence test, Dini's test.
More sophisticated types of convergence of a series of functions can also be defined. In measure theory, for instance, a series of functions converges almost everywhere if it converges pointwise except on a certain set of measure zero. Other modes of convergence depend on a different metric space structure on the space of functions under consideration. For instance, a series of functions converges in mean on a set E to a limit function ƒ provided
as N → ∞.
Read more about this topic: Series (mathematics)
Famous quotes containing the words series of, series and/or functions:
“The professional celebrity, male and female, is the crowning result of the star system of a society that makes a fetish of competition. In America, this system is carried to the point where a man who can knock a small white ball into a series of holes in the ground with more efficiency than anyone else thereby gains social access to the President of the United States.”
—C. Wright Mills (19161962)
“Personality is an unbroken series of successful gestures.”
—F. Scott Fitzgerald (18961940)
“Adolescents, for all their self-involvement, are emerging from the self-centeredness of childhood. Their perception of other people has more depth. They are better equipped at appreciating others reasons for action, or the basis of others emotions. But this maturity functions in a piecemeal fashion. They show more understanding of their friends, but not of their teachers.”
—Terri Apter (20th century)