Series Expansion

In mathematics, a series expansion is a method for calculating a function that cannot be expressed by just elementary operators (addition, subtraction, multiplication and division). The resulting so-called series often can be limited to a finite number of terms, thus yielding an approximation of the function. The fewer terms of the sequence are used, the simpler this approximation will be. Often, the resulting inaccuracy (i.e., the partial sum of the omitted terms) can be described by an equation.

There are several kinds of series expansions, such as:

  • Taylor series: A power series based on a function’s derivatives at a single point.
  • Maclaurin series: A special case of a Taylor series, centred at zero.
  • Laurent series: An extension of the Taylor series, allowing negative exponent values.
  • Dirichlet series: Used in number theory.
  • Fourier series: Describes periodical functions as a series of sine and cosine functions. In acoustics, e.g., the fundamental tone and the overtones together form an example of a Fourier series.
  • Legendre polynomials: Used in physics to describe an arbitrary electrical field as a superposition of a dipole field, a quadrupole field, an octupole field, etc.
  • Zernike polynomials: Used in optics to calculate aberrations of optical systems. Each term in the series describes a particular type of aberration.

For more details, refer to the articles mentioned.

Famous quotes containing the words series and/or expansion:

    The woman’s world ... is shown as a series of limited spaces, with the woman struggling to get free of them. The struggle is what the film is about; what is struggled against is the limited space itself. Consequently, to make its point, the film has to deny itself and suggest it was the struggle that was wrong, not the space.
    Jeanine Basinger (b. 1936)

    Artistic genius is an expansion of monkey imitativeness.
    W. Winwood Reade (1838–1875)