In proof theory and mathematical logic, sequent calculus is a family of formal systems sharing a certain style of inference and certain formal properties. The first sequent calculi, systems LK and LJ, were introduced by Gerhard Gentzen in 1934 as a tool for studying natural deduction in first-order logic (in classical and intuitionistic versions, respectively). Gentzen's so-called "Main Theorem" (Hauptsatz) about LK and LJ was the cut-elimination theorem, a result with far-reaching meta-theoretic consequences, including consistency. Gentzen further demonstrated the power and flexibility of this technique a few years later, applying a cut-elimination argument to give a (transfinite) proof of the consistency of Peano arithmetic, in surprising response to Gödel's incompleteness theorems. Since this early work, sequent calculi (also called Gentzen systems) and the general concepts relating to them have been widely applied in the fields of proof theory, mathematical logic, and automated deduction.
Read more about Sequent Calculus: Introduction, The System LK
Famous quotes containing the words sequent and/or calculus:
“Nor sequent centuries could hit
Orbit and sum of SHAKSPEAREs wit.
The men who lived with him became
Poets, for the air was fame.”
—Ralph Waldo Emerson (18031882)
“I try to make a rough music, a dance of the mind, a calculus of the emotions, a driving beat of praise out of the pain and mystery that surround me and become me. My poems are meant to make your mind get up and shout.”
—Judith Johnson Sherwin (b. 1936)