Other Separation Axioms
There are some other conditions on topological spaces that are sometimes classified with the separation axioms, but these don't fit in with the usual separation axioms as completely. Other than their definitions, they aren't discussed here; see their individual articles.
- X is semiregular if the regular open sets form a base for the open sets of X. Any regular space must also be semiregular.
- X is quasi-regular if for any nonempty open set G, there is a nonempty open set H such that the closure of H is contained in G.
- X is fully normal if every open cover has an open star refinement. X is fully T4, or fully normal Hausdorff, if it is both T1 and fully normal. Every fully normal space is normal and every fully T4 space is T4. Moreover, one can show that every fully T4 space is paracompact. In fact, fully normal spaces actually have more to do with paracompactness than with the usual separation axioms.
- X is sober if, for every closed set C that is not the (possibly nondisjoint) union of two smaller closed sets, there is a unique point p such that the closure of {p} equals C. More briefly, every irreducible closed set has a unique generic point. Any Hausdorff space must be sober, and any sober space must be T0.
Read more about this topic: Separation Axiom
Famous quotes containing the words separation and/or axioms:
“A separation situation is different for adults than it is for children. When we were very young children, a physical separation was interpreted as a violation of our inalienable rights....As we grew older, the withdrawal of love, whether that meant being misunderstood, mislabeled or slighted, became the separation situation we responded to.”
—Roger Gould (20th century)
“The axioms of physics translate the laws of ethics. Thus, the whole is greater than its part; reaction is equal to action; the smallest weight may be made to lift the greatest, the difference of weight being compensated by time; and many the like propositions, which have an ethical as well as physical sense. These propositions have a much more extensive and universal sense when applied to human life, than when confined to technical use.”
—Ralph Waldo Emerson (18031882)