Separated Sets - Relation To Topologically Distinguishable Points

Relation To Topologically Distinguishable Points

Given a topological space X, two points x and y are topologically distinguishable if there exists an open set that one point belongs to but the other point does not. If x and y are topologically distinguishable, then the singleton sets {x} and {y} must be disjoint. On the other hand, if the singletons {x} and {y} are separated, then the points x and y must be topologically distinguishable. Thus for singletons, topological distinguishability is a condition in between disjointness and separatedness.

For more about topologically distinguishable points, see Topological distinguishability.

Read more about this topic:  Separated Sets

Famous quotes containing the words relation to, relation and/or points:

    In relation to God, we are like a thief who has burgled the house of a kindly householder and been allowed to keep some of the gold. From the point of view of the lawful owner this gold is a gift; From the point of view of the burglar it is a theft. He must go and give it back. It is the same with our existence. We have stolen a little of God’s being to make it ours. God has made us a gift of it. But we have stolen it. We must return it.
    Simone Weil (1909–1943)

    There is undoubtedly something religious about it: everyone believes that they are special, that they are chosen, that they have a special relation with fate. Here is the test: you turn over card after card to see in which way that is true. If you can defy the odds, you may be saved. And when you are cleaned out, the last penny gone, you are enlightened at last, free perhaps, exhilarated like an ascetic by the falling away of the material world.
    Andrei Codrescu (b. 1947)

    Only that which points the human spirit beyond its own limitations into what is universally human gives the individual strength superior to his own. Only in suprahuman demands which can hardly be fulfilled do human beings and peoples feel their true and sacred measure.
    Stefan Zweig (18811942)