Separated Sets - Relation To Connected Spaces

Relation To Connected Spaces

Given a topological space X, it is sometimes useful to consider whether it is possible for a subset A to be separated from its complement. This is certainly true if A is either the empty set or the entire space X, but there may be other possibilities. A topological space X is connected if these are the only two possibilities. Conversely, if a nonempty subset A is separated from its own complement, and if the only subset of A to share this property is the empty set, then A is an open-connected component of X. (In the degenerate case where X is itself the empty set {}, authorities differ on whether {} is connected and whether {} is an open-connected component of itself.)

For more on connected spaces, see Connected space.

Read more about this topic:  Separated Sets

Famous quotes containing the words relation to, relation, connected and/or spaces:

    Unaware of the absurdity of it, we introduce our own petty household rules into the economy of the universe for which the life of generations, peoples, of entire planets, has no importance in relation to the general development.
    Alexander Herzen (1812–1870)

    Light is meaningful only in relation to darkness, and truth presupposes error. It is these mingled opposites which people our life, which make it pungent, intoxicating. We only exist in terms of this conflict, in the zone where black and white clash.
    Louis Aragon (1897–1982)

    When, in the course of human events, it becomes necessary for one people to dissolve the political bands which have connected them with another, and to assume the powers of the earth, the separate and equal station to which the laws of nature and of nature’s God entitle them, a decent respect to the opinions of mankind requires that they should declare the causes which impel them to the separation.
    Thomas Jefferson (1743–1826)

    When I consider the short duration of my life, swallowed up in the eternity before and after, the little space which I fill and even can see, engulfed in the infinite immensity of spaces of which I am ignorant and which know me not, I am frightened and am astonished at being here rather than there. For there is no reason why here rather than there, why now rather than then.
    Blaise Pascal (1623–1662)