Properties
- A subspace of a separable space need not be separable (see the Sorgenfrey plane and the Moore plane), but every open subspace of a separable space is separable, (Willard 1970, Th 16.4b). Also every subspace of a separable metric space is separable.
- In fact, every topological space is a subspace of a separable space of the same cardinality. A construction adding at most countably many points is given in (Sierpinski 1952, p. 49).
- The set of all real-valued continuous functions on a separable space has a cardinality less than or equal to c. This follows since such functions are determined by their values on dense subsets.
- From the above property, one can deduce the following: If X is a separable space having an uncountable closed discrete subspace, then X cannot be normal. This shows that the Sorgenfrey plane is not normal.
- For a compact Hausdorff space X, the following are equivalent:
-
- (i) X is second countable.
- (ii) The space of continuous real-valued functions on X with the supremum norm is separable.
- (iii) X is metrizable.
Read more about this topic: Separable Space
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)