Separable Extension - The Definition of Separable Non-algebraic Extension Fields

The Definition of Separable Non-algebraic Extension Fields

Although many important applications of the theory of separable extensions stem from the context of algebraic field extensions, there are important instances in mathematics where it is profitable to study (not necessarily algebraic) separable field extensions.

Let be a field extension and let p be the characteristic exponent of . For any field extension L of k, we write (cf. Tensor product of fields.) Then F is said to be separable over if the following equivalent conditions are met:

  • and are linearly disjoint over
  • is reduced.
  • is reduced for all field extensions L of k.

(In other words, F is separable over k if F is a separable k-algebra.)

Suppose there is some field extension L of k such that is a domain. Then is separable over k if and only if the field of fractions of is separable over L.

An algebraic element of F is said to be separable over if its minimal polynomial is separable. If is an algebraic extension, then the following are equivalent.

  • F is separable over k.
  • F consists of elements that are separable over k.
  • Every subextension of F/k is separable.
  • Every finite subextension of F/k is separable.

If is finite extension, then the following are equivalent.

  • (i) F is separable over k.
  • (ii) where are separable over k.
  • (iii) In (ii), one can take
  • (iv) For some very large field, there are precisely k-isomorphisms from to .

In the above, (iii) is known as the primitive element theorem.

Fix the algebraic closure, and denote by the set of all elements of that are separable over k. is then separable algebraic over k and any separable algebraic subextension of is contaiend in ; it is called the separable closure of k (inside ). is then purely inseparable over . Put in another way, k is perfect if and only if .

Read more about this topic:  Separable Extension

Famous quotes containing the words definition, extension and/or fields:

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    ‘Tis the perception of the beautiful,
    A fine extension of the faculties,
    Platonic, universal, wonderful,
    Drawn from the stars, and filtered through the skies,
    Without which life would be extremely dull.
    George Gordon Noel Byron (1788–1824)

    Over the tree-tops I float thee a song,
    Over the rising and sinking waves, over the myriad fields and the
    prairies wide,
    Over the dense-packed cities all and the teeming wharves and ways,
    I float this carol with joy, with joy to thee, O death,
    Walt Whitman (1819–1892)