Semidirect Product - Generalizations

Generalizations

The construction of semidirect products can be pushed much further. The Zappa–Szep product of groups is a generalization which, in its internal version, does not assume that either subgroup is normal. There is also a construction in ring theory, the crossed product of rings. This is seen naturally as soon as one constructs a group ring for a semidirect product of groups. There is also the semidirect sum of Lie algebras. Given a group action on a topological space, there is a corresponding crossed product which will in general be non-commutative even if the group is abelian. This kind of ring (see crossed product for a related construction) can play the role of the space of orbits of the group action, in cases where that space cannot be approached by conventional topological techniques – for example in the work of Alain Connes (cf. noncommutative geometry).

There are also far-reaching generalisations in category theory. They show how to construct fibred categories from indexed categories. This is an abstract form of the outer semidirect product construction.

Read more about this topic:  Semidirect Product