Types
RAM (Random access memory) has become a generic term for any semiconductor memory that can be written to, as well as read from, in contrast to ROM (below), which can only be read. It should be noted that all semiconductor memory, not just RAM, has the property of random access.
Volatile memory loses its stored data when the power to the memory chip is turned off. However it can be faster and less expensive than non-volatile memory. This type is used for the main memory in most computers, since data is stored on the hard disk while the computer is off. Major types are:
- DRAM (Dynamic random-access memory) which uses memory cells consisting of one capacitor and one transistor to store each bit. This is the cheapest and highest in density, so it is used for the main memory in computers. However the electric charge that stores the data in the memory cells slowly leaks off, so the memory cells must be periodically refreshed (rewritten), requiring additional circuitry. The refresh process is automatic and transparent to the user.
- FPM DRAM (Fast page mode DRAM) An older type of asynchronous DRAM that improved on previous types by allowing repeated accesses to a single "page" of memory to occur at a faster rate. Used in the mid-1990s.
- EDO DRAM (Extended data out DRAM) An older type of asynchronous DRAM which had faster access time than earlier types by being able to initiate a new memory access while data from the previous access was still being transferred. Used in the later part of the 1990s.
- VRAM (Video random access memory) An older type of dual-ported memory once used for the frame buffers of video adapters (video cards).
- SDRAM (Synchronous dynamic random-access memory) This was a reorganization of the DRAM memory chip, which added a clock line to enable it to operate in synchronism with the computer's memory bus clock. The data on the chip is divided into banks so it can work on several memory accesses simultaneously, in separate banks. It became the dominant type of computer memory by about the year 2000.
- DDR SDRAM (Double data rate SDRAM) This was an increased data rate modification, enabling the chip to transfer twice the memory data (two consecutive words) on each clock cycle by double pumping, transferring data on both the leading and trailing edges of the clock pulse. Extensions of this idea are the current (2012) technique being used to increase memory access rate and bandwidth. Since it is proving difficult to further increase the internal clock speed of memory chips, these chips increase data rate by transferring data in larger blocks:
- DDR2 SDRAM transfers 4 consecutive words per internal clock cycle
- DDR3 SDRAM transfers 8 consecutive words per internal clock cycle.
- DDR4 SDRAM transfers 16 consecutive words per internal clock cycle. It is scheduled to debut in 2012.
- RDRAM (Rambus DRAM) an alternate double data rate memory standard that was used on some Intel systems but ultimately lost out to DDR SDRAM.
- SGRAM (Synchronous graphics RAM) a specialized type of SDRAM made for graphics adaptors (video cards). It can perform graphics-related operations such as bit masking and block write, and can open two pages of memory at once.
- PSRAM (Pseudostatic RAM) This is DRAM which has circuitry to perform memory refresh on the chip, so that it acts like SRAM, allowing the external memory controller to be shut down to save energy. It is used in a few portable game controllers such as the Wii.
- DDR SDRAM (Double data rate SDRAM) This was an increased data rate modification, enabling the chip to transfer twice the memory data (two consecutive words) on each clock cycle by double pumping, transferring data on both the leading and trailing edges of the clock pulse. Extensions of this idea are the current (2012) technique being used to increase memory access rate and bandwidth. Since it is proving difficult to further increase the internal clock speed of memory chips, these chips increase data rate by transferring data in larger blocks:
- SRAM (Static random-access memory) which relies on several transistors forming a digital flip-flop to store each bit. This is less dense and more expensive per bit than DRAM, but faster and does not require memory refresh. It is used for smaller cache memories in computers.
- Content-addressable memory This is a specialized type in which, instead of accessing data using an address, a data word is applied and the memory returns the location if the word is stored in the memory. It is mostly incorporated in other chips such as microprocessors where it is used for cache memory.
Nonvolatile memory preserves the data stored in it during periods when the power to the chip is turned off. Therefore it is used for the memory in portable devices, which don't have disks, and for removable memory cards among other uses. Major types are:
- ROM (Read-only memory) This is designed to hold permanent data, and in normal operation is only read from, not written to. Although some types can be written to, the writing process is slow and usually all the data in the chip must be rewritten at once. It is usually used to store system software which must be immediately accessible to the computer, such as the BIOS program which starts the computer, and the software for portable devices and embedded computers such as microcontrollers.
- Mask programmed ROM In this type the data is programmed into the chip during manufacture, so it is only used for large production runs.
- PROM (Programmable read-only memory) In this type the data is written into the chip before it is installed in the circuit, but it can only be written once. The data is written by plugging the chip into a device called a PROM programmer.
- EPROM (Erasable programmable read-only memory) In this type the data in it can be rewritten by removing the chip from the circuit board, exposing it to an ultraviolet light to erase it, and plugging it into a PROM programmer. It is often used for prototypes and small production run devices, where the program in it must be changed at the factory.
- EEPROM (Electrically erasable programmable read-only memory) In this type the data can be rewritten electrically, while the chip is on the circuit board, but the writing process is slow. This type is used to hold firmware, the low level microcode which runs hardware devices, such as the BIOS program in most computers, so that it can be updated.
- NVRAM (Flash memory) In this type the writing process is intermediate in speed between EEPROMS and RAM memory; it can be written to, but not fast enough to serve as main memory. It is often used as a semiconductor version of a hard disk, to store files. It is used in portable devices such as PDAs, USB flash drives, and removable memory cards used in digital cameras and cellphones.
- MRAM (Magnetoresistive random-access memory)
Read more about this topic: Semiconductor Memory
Famous quotes containing the word types:
“He types his laboured columnweary drudge!
Senile fudge and solemn:
Spare, editor, to condemn
These dry leaves of his autumn.”
—Robertson Davies (b. 1913)
“The bourgeoisie loves so-called positive types and novels with happy endings since they lull one into thinking that it is fine to simultaneously acquire capital and maintain ones innocence, to be a beast and still be happy.”
—Anton Pavlovich Chekhov (18601904)
“As for types like my own, obscurely motivated by the conviction that our existence was worthless if we didnt make a turning point of it, we were assigned to the humanities, to poetry, philosophy, paintingthe nursery games of humankind, which had to be left behind when the age of science began. The humanities would be called upon to choose a wallpaper for the crypt, as the end drew near.”
—Saul Bellow (b. 1915)