Spectral Multiplicity Theory
The multiplication representation of a self-adjoint operator, though extremely useful, is not a canonical representation. This suggests that it is not easy to extract from this representation a criterion to determine when self-adjoint operators A and B are unitarily equivalent. The finest grained representation which we now discuss involves spectral multiplicity. This circle of results is called the Hahn-Hellinger theory of spectral multiplicity.
We first define uniform multiplicity:
Definition. A self-adjoint operator A has uniform multiplicity n where n is such that 1 ≤ n ≤ ω if and only if A is unitarily equivalent to the operator Mf of multiplication by the function f(λ) = λ on
where Hn is a Hilbert space of dimension n. The domain of Mf consists of vector-valued functions ψ on R such that
Non-negative countably additive measures μ, ν are mutually singular if and only if they are supported on disjoint Borel sets.
Theorem. Let A be a self-adjoint operator on a separable Hilbert space H. Then there is an ω sequence of countably additive finite measures on R (some of which may be identically 0)
such that the measures are pairwise singular and A is unitarily equivalent to the operator of multiplication by the function f(λ) = λ on
This representation is unique in the following sense: For any two such representations of the same A, the corresponding measures are equivalent in the sense that they have the same sets of measure 0.
The spectral multiplicity theorem can be reformulated using the language of direct integrals of Hilbert spaces:
Theorem. Any self-adjoint operator on a separable Hilbert space is unitarily equivalent to multiplication by the function λ → λ on
The measure equivalence class of μ (or equivalently its sets of measure 0) is uniquely determined and the measurable family {Hx}x is determined almost everywhere with respect to μ.
Read more about this topic: Self-adjoint Operator
Famous quotes containing the words spectral, multiplicity and/or theory:
“How does one kill fear, I wonder? How do you shoot a spectre through the heart, slash off its spectral head, take it by its spectral throat?”
—Joseph Conrad (18571924)
“The point of cities is multiplicity of choice.”
—Jane Jacobs (b. 1916)
“We commonly say that the rich man can speak the truth, can afford honesty, can afford independence of opinion and action;and that is the theory of nobility. But it is the rich man in a true sense, that is to say, not the man of large income and large expenditure, but solely the man whose outlay is less than his income and is steadily kept so.”
—Ralph Waldo Emerson (18031882)