Self-adjoint Operator - Pure Point Spectrum

Pure Point Spectrum

A self-adjoint operator A on H has pure point spectrum if and only if H has an orthonormal basis {ei}i ∈ I consisting of eigenvectors for A.

Example. The Hamiltonian for the harmonic oscillator has a quadratic potential V, that is

This Hamiltonian has pure point spectrum; this is typical for bound state Hamiltonians in quantum mechanics. As was pointed out in a previous example, a sufficient condition that an unbounded symmetric operator has eigenvectors which form a Hilbert space basis is that it has a compact inverse.

Read more about this topic:  Self-adjoint Operator

Famous quotes containing the words pure and/or point:

    Wilson adventured for the whole of the human race. Not as a servant, but as a champion. So pure was this motive, so unflecked with anything that his worst enemies could find, except the mildest and most excusable, a personal vanity, practically the minimum to be human, that in a sense his adventure is that of humanity itself. In Wilson, the whole of mankind breaks camp, sets out from home and wrestles with the universe and its gods.
    William Bolitho (1890–1930)

    I philosophize from the vantage point only of our own
    provincial conceptual scheme and scientific epoch, true; but I know no better.
    Willard Van Orman Quine (b. 1908)