Selection Algorithm - Lower Bounds

Lower Bounds

In The Art of Computer Programming, Donald E. Knuth discussed a number of lower bounds for the number of comparisons required to locate the t smallest entries of an unorganized list of n items (using only comparisons). There is a trivial lower bound of n − 1 for the minimum or maximum entry. To see this, consider a tournament where each game represents one comparison. Since every player except the winner of the tournament must lose a game before we know the winner, we have a lower bound of n − 1 comparisons.

The story becomes more complex for other indexes. We define as the minimum number of comparisons required to find the t smallest values. Knuth references a paper published by S. S. Kislitsyn, which shows an upper bound on this value:

This bound is achievable for t=2 but better, more complex bounds are known for larger t.

Read more about this topic:  Selection Algorithm

Famous quotes containing the word bounds:

    Prohibition will work great injury to the cause of temperance. It is a species of intemperance within itself, for it goes beyond the bounds of reason in that it attempts to control a man’s appetite by legislation, and makes a crime out of things that are not crimes. A Prohibition law strikes a blow at the very principles upon which our government was founded.
    Abraham Lincoln (1809–1865)

    Great Wits are sure to Madness near alli’d
    And thin Partitions do their Bounds divide;
    Else, why should he, with Wealth and Honour blest,
    Refuse his Age the needful hours of Rest?
    John Dryden (1631–1700)