Crustal Anisotropy
In the Earth's crust, anisotropy may be caused by preferentially aligned joints or microcracks, by layered bedding in sedimentary formations, or by highly foliated metamorphic rocks. Crustal anisotropy resulting from aligned cracks can be used to determine the state of stress in the crust, since in many cases, cracks are preferentially aligned with their flat faces oriented in the direction of minimum compressive stress. In active tectonic areas, such as near faults and volcanoes, anisotropy can be used to look for changes in preferred orientation of cracks that may indicate a rotation of the stress field.
Both seismic P-waves and S-waves may exhibit anisotropy. For both, the anisotropy may appear as a (continuous) dependence of velocity upon the direction of propagation. For S-waves, it may also appear as a (discrete) dependence of velocity upon the direction of polarization. For a given direction of propagation in any homogeneous medium, only two polarization directions are allowed, with other polarizations decomposing trigonometrically into these two. Hence, shear waves naturally "split" into separate arrivals with these two polarizations; in optics this is called birefringence.
Crustal anisotropy is very important in the production of oil reservoirs, as the seismically fast directions can indicate preferred directions of fluid flow.
In crustal geophysics, the anisotropy is usually weak; this enables a simplification of the expressions for seismic velocities and reflectivities, as functions of propagation (and polarization) direction. In the simplest geophysically plausible case, that of polar anisotropy, the analysis is most conveniently done in terms of Thomsen Parameters.
Read more about this topic: Seismic Anisotropy