Formation of Theories
The scientific method involves the proposal and testing of hypotheses, by deriving predictions from the hypotheses about the results of future experiments, then performing those experiments to see whether the predictions are valid. This provides evidence either for or against the hypothesis. When enough experimental results have been gathered in a particular area of inquiry, scientists may propose an explanatory framework that accounts for as many of these as possible. This explanation is also tested, and if it fulfills the necessary criteria (see above), then the explanation becomes a theory. This can take many years, as it can be difficult or complicated to gather sufficient evidence.
Once all of the criteria have been met, it will be widely accepted by scientists (see scientific consensus) as the best available explanation of at least some phenomena. It will have made predictions of phenomena that previous theories could not explain or could not predict accurately, and it will have resisted attempts at falsification. The strength of the evidence is evaluated by the scientific community, and the most important experiments will have been replicated by multiple independent groups.
Theories do not have to be perfectly accurate to be scientifically useful. For example, the predictions made by classical mechanics are known to be inaccurate in the relatistivic realm, but they are almost exactly correct at the comparatively low velocities of common human experience. In chemistry, there are many acid-base theories providing highly divergent explanations of the underlying nature of acidic and basic compounds, but they are very useful for predicting their chemical behavior. Like all knowledge in science, no theory can ever be completely certain, since it is possible that future experiments might conflict with the theory's predictions. However, theories supported by the scientific consensus have the highest level of certainty of any scientific knowledge; for example, that all objects are subject to gravity or that life on Earth evolved from a common ancestor.
Acceptance of a theory does not require that all of its major predictions be tested, if it is already supported by sufficiently strong evidence. For example, certain tests may be unfeasible or technically difficult. As a result, theories may make predictions that have not yet been confirmed or proven incorrect; in this case, the predicted results may be described informally with the term "theoretical." These predictions can be tested at a later time, and if they are incorrect, this may lead to revision or rejection of the theory.
Read more about this topic: Scientific Theory
Famous quotes containing the words formation of, formation and/or theories:
“... the mass migrations now habitual in our nation are disastrous to the family and to the formation of individual character. It is impossible to create a stable society if something like a third of our people are constantly moving about. We cannot grow fine human beings, any more than we can grow fine trees, if they are constantly torn up by the roots and transplanted ...”
—Agnes E. Meyer (18871970)
“The formation of an oppositional world view is necessary for feminist struggle. This means that the world we have most intimately known, the world in which we feel safe ... must be radically changed. Perhaps it is the knowledge that everyone must change, not just those we label enemies or oppressors, that has so far served to check our revolutionary impulses.”
—Bell (c. 1955)
“Generalisation is necessary to the advancement of knowledge; but particularly is indispensable to the creations of the imagination. In proportion as men know more and think more they look less at individuals and more at classes. They therefore make better theories and worse poems.”
—Thomas Babington Macaulay (18001859)