Scientific Method - History

History

Main article: History of scientific method See also: Timeline of the history of scientific method

The development of the scientific method is inseparable from the history of science itself. Ancient Egyptian documents describe empirical methods in astronomy, mathematics, and medicine. The ancient Greek philosopher Thales in the 6th century BC refused to accept supernatural, religious or mythological explanations for natural phenomena, proclaiming that every event had a natural cause. The development of deductive reasoning by Plato was an important step towards the scientific method. Empiricism seems to have been formalized by Aristotle, who believed that universal truths could be reached via induction.

There are hints of experimental methods from the Classical world (e.g., those reported by Archimedes in a report recovered early in the 20th century from an overwritten manuscript), but the first clear instances of an experimental scientific method seem to have been developed by Islamic scientists who introduced the use of experimentation and quantification within a generally empirical orientation. For example, Alhazen performed optical and physiological experiments, reported in his manifold works, the most famous being Book of Optics (1021).

By the late 15th century, the physician-scholar Niccolò Leoniceno was finding errors in Pliny's Natural History. As a physician, Leoniceno was concerned about these botanical errors propagating to the materia medica on which medicines were based. To counter this, a botanical garden was established at Orto botanico di Padova, University of Padua (in use for teaching by 1546), in order that medical students might have empirical access to the plants of a pharmacopia. The philosopher and physician Francisco Sanches was led by his medical training at Rome, 1571–73, and by his innate skepticism, to search for a true method of knowing (modus sciendi), as nothing clear can be known by the methods of Aristotle and his followers — for example, syllogism fails upon circular reasoning. Following the physician Galen's method of medicine, Sanches lists the methods of judgement and experience, which are faulty in the wrong hands, and we are left with the bleak statement That Nothing is Known (1581). This challenge was taken up by René Descartes in the next generation (1637), but at the least, Sanches warns us that we ought to refrain from the methods, summaries, and commentaries on Aristotle, if we seek scientific knowledge. In this, he is echoed by Francis Bacon; Sanches cites the humanist Juan Luis Vives who sought a better educational system, as well as a statement of human rights as a pathway for improvement of the lot of the poor.

The modern scientific method crystallized no later than in the 17th and 18th centuries. In his work Novum Organum (1620) — a reference to Aristotle's Organon — Francis Bacon outlined a new system of logic to improve upon the old philosophical process of syllogism. Then, in 1637, René Descartes established the framework for scientific method's guiding principles in his treatise, Discourse on Method. The writings of Alhazen, Bacon and Descartes are considered critical in the historical development of the modern scientific method, as are those of John Stuart Mill.

Grosseteste was "the principal figure" in bringing about "a more adequate method of scientific inquiry" by which "medieval scientists were able eventually to outstrip their ancient European and Muslim teachers" (Dales 1973:62). ... His thinking influenced Roger Bacon, who spread Grosseteste's ideas from Oxford to the University of Paris during a visit there in the 1240s. From the prestigious universities in Oxford and Paris, the new experimental science spread rapidly throughout the medieval universities: "And so it went to Galileo, William Gilbert, Francis Bacon, William Harvey, Descartes, Robert Hooke, Newton, Leibniz, and the world of the seventeenth century" (Crombie 1962:15). So it went to us also. — Hugh G. Gauch, 2003.

In the late 19th century, Charles Sanders Peirce proposed a schema that would turn out to have considerable influence in the development of current scientific methodology generally. Peirce accelerated the progress on several fronts. Firstly, speaking in broader context in "How to Make Our Ideas Clear" (1878), Peirce outlined an objectively verifiable method to test the truth of putative knowledge on a way that goes beyond mere foundational alternatives, focusing upon both deduction and induction. He thus placed induction and deduction in a complementary rather than competitive context (the latter of which had been the primary trend at least since David Hume, who wrote in the mid-to-late 18th century). Secondly, and of more direct importance to modern method, Peirce put forth the basic schema for hypothesis/testing that continues to prevail today. Extracting the theory of inquiry from its raw materials in classical logic, he refined it in parallel with the early development of symbolic logic to address the then-current problems in scientific reasoning. Peirce examined and articulated the three fundamental modes of reasoning that, as discussed above in this article, play a role in inquiry today, the processes that are currently known as abductive, deductive, and inductive inference. Thirdly, he played a major role in the progress of symbolic logic itself — indeed this was his primary specialty.

Beginning in the 1930s, Karl Popper argued that there is no such thing as inductive reasoning. All inferences ever made, including in science, are purely deductive according to this view. Accordingly, he claimed that the empirical character of science has nothing to do with induction—but with the deductive property of falsifiability that scientific hypotheses have. Contrasting his views with inductivism and positivism, he even denied the existence of the scientific method: "(1) There is no method of discovering a scientific theory (2) There is no method for ascertaining the truth of a scientific hypothesis, i.e., no method of verification; (3) There is no method for ascertaining whether a hypothesis is 'probable', or probably true". Instead, he held that there is only one universal method, a method not particular to science: The negative method of criticism, or colloquially termed trial and error. It covers not only all products of the human mind, including science, mathematics, philosophy, art and so on, but also the evolution of life. Following Peirce and others, Popper argued that science is fallible and has no authority. In contrast to empiricist-inductivist views, he welcomed metaphysics and philosophical discussion and even gave qualified support to myths and pseudosciences. Popper's view has become known as critical rationalism.

Read more about this topic:  Scientific Method

Famous quotes containing the word history:

    It would be naive to think that peace and justice can be achieved easily. No set of rules or study of history will automatically resolve the problems.... However, with faith and perseverance,... complex problems in the past have been resolved in our search for justice and peace. They can be resolved in the future, provided, of course, that we can think of five new ways to measure the height of a tall building by using a barometer.
    Jimmy Carter (James Earl Carter, Jr.)

    History takes time.... History makes memory.
    Gertrude Stein (1874–1946)

    It’s not the sentiments of men which make history but their actions.
    Norman Mailer (b. 1923)