Scale Space - Related Multi-scale Representations

Related Multi-scale Representations

An image pyramid is a discrete representation in which a scale space is sampled in both space and scale. For scale invariance, the scale factors should be sampled exponentially, for example as integer powers of 2 or root 2. When properly constructed, the ratio of the sample rates in space and scale are held constant so that the impulse response is identical in all levels of the pyramid. Fast, O(N), algorithms exist for computing a scale invariant image pyramid in which the image or signal is repeatedly smoothed then subsampled. Values for scale space between pyramid samples can easily be estimated using interpolation within and between scales.

In a scale-space representation, the existence of a continuous scale parameter makes it possible to track zero crossings over scales leading to so-called deep structure. For features defined as zero-crossings of differential invariants, the implicit function theorem directly defines trajectories across scales, and at those scales where bifurcations occur, the local behaviour can be modelled by singularity theory.

Extensions of linear scale-space theory concern the formulation of non-linear scale-space concepts more committed to specific purposes. These non-linear scale-spaces often start from the equivalent diffusion formulation of the scale-space concept, which is subsequently extended in a non-linear fashion. A large number of evolution equations have been formulated in this way, motivated by different specific requirements (see the abovementioned book references for further information). It should be noted, however, that not all of these non-linear scale-spaces satisfy similar "nice" theoretical requirements as the linear Gaussian scale-space concept. Hence, unexpected artifacts may sometimes occur and one should be very careful of not using the term "scale-space" for just any type of one-parameter family of images.

A first-order extension of the isotropic Gaussian scale space is provided by the affine (Gaussian) scale space. One motivation for this extension originates from the common need for computing image descriptors subject for real-world objects that are viewed under a perspective camera model. To handle such non-linear deformations locally, partial invariance (or more correctly covariance) to local affine deformations can be achieved by considering affine Gaussian kernels with their shapes determined by the local image structure, see the article on affine shape adaptation for theory and algorithms. Indeed, this affine scale space can also be expressed from a non-isotropic extension of the linear (isotropic) diffusion equation, while still being within the class of linear partial differential equations.

There are strong relations between scale-space theory and wavelet theory, although these two notions of multi-scale representation have been developed from somewhat different premises. There has also been work on other multi-scale approaches, such as pyramids and a variety of other kernels, that do not exploit or require the same requirements as true scale-space descriptions do.

Read more about this topic:  Scale Space

Famous quotes containing the word related:

    In the middle years of childhood, it is more important to keep alive and glowing the interest in finding out and to support this interest with skills and techniques related to the process of finding out than to specify any particular piece of subject matter as inviolate.
    Dorothy H. Cohen (20th century)