Integrability Conditions
If F is a conservative vector field (also called irrotational, curl-free, or potential), and its components have continuous partial derivatives, the potential of F with respect to a reference point is defined in terms of the line integral:
where C is a parametrized path from to
The fact that the line integral depends on the path C only through its terminal points and is, in essence, the path independence property of a conservative vector field. The fundamental theorem of calculus for line integrals implies that if V is defined in this way, then so that V is a scalar potential of the conservative vector field F. Scalar potential is not determined by the vector field alone: indeed, the gradient of a function is unaffected if a constant is added to it. If V is defined in terms of the line integral, the ambiguity of V reflects the freedom in the choice of the reference point
Read more about this topic: Scalar Potential
Famous quotes containing the word conditions:
“The Settlement ... is an experimental effort to aid in the solution of the social and industrial problems which are engendered by the modern conditions of life in a great city. It insists that these problems are not confined to any one portion of the city. It is an attempt to relieve, at the same time, the overaccumulation at one end of society and the destitution at the other ...”
—Jane Addams (18601935)