Scalar Potential - Integrability Conditions

Integrability Conditions

If F is a conservative vector field (also called irrotational, curl-free, or potential), and its components have continuous partial derivatives, the potential of F with respect to a reference point is defined in terms of the line integral:

where C is a parametrized path from to

The fact that the line integral depends on the path C only through its terminal points and is, in essence, the path independence property of a conservative vector field. The fundamental theorem of calculus for line integrals implies that if V is defined in this way, then so that V is a scalar potential of the conservative vector field F. Scalar potential is not determined by the vector field alone: indeed, the gradient of a function is unaffected if a constant is added to it. If V is defined in terms of the line integral, the ambiguity of V reflects the freedom in the choice of the reference point

Read more about this topic:  Scalar Potential

Famous quotes containing the word conditions:

    The Supreme Court would have pleased me more if they had concerned themselves about enforcing the compulsory education provisions for Negroes in the South as is done for white children. The next ten years would be better spent in appointing truant officers and looking after conditions in the homes from which the children come. Use to the limit what we already have.
    Zora Neale Hurston (1891–1960)