Sampling Bias - Types of Sampling Bias

Types of Sampling Bias

  • Selection from a specific real area. For example, a survey of high school students to measure teenage use of illegal drugs will be a biased sample because it does not include home-schooled students or dropouts. A sample is also biased if certain members are underrepresented or overrepresented relative to others in the population. For example, a "man on the street" interview which selects people who walk by a certain location is going to have an overrepresentation of healthy individuals who are more likely to be out of the home than individuals with a chronic illness. This may be an extreme form of biased sampling, because certain members of the population are totally excluded from the sample (that is, they have zero probability of being selected).
  • Self-selection bias, which is possible whenever the group of people being studied has any form of control over whether to participate. Participants' decision to participate may be correlated with traits that affect the study, making the participants a non-representative sample. For example, people who have strong opinions or substantial knowledge may be more willing to spend time answering a survey than those who do not. Another example is online and phone-in polls, which are biased samples because the respondents are self-selected. Those individuals who are highly motivated to respond, typically individuals who have strong opinions, are overrepresented, and individuals that are indifferent or apathetic are less likely to respond. This often leads to a polarization of responses with extreme perspectives being given a disproportionate weight in the summary. As a result, these types of polls are regarded as unscientific.
  • Pre-screening of trial participants, or advertising for volunteers within particular groups. For example a study to "prove" that smoking does not affect fitness might recruit at the local fitness center, but advertise for smokers during the advanced aerobics class, and for non-smokers during the weight loss sessions.
  • Exclusion bias results from exclusion of particular groups from the sample, e.g. exclusion of subjects who have recently migrated into the study area (this may occur when newcomers are not available in a register used to identify the source population). Excluding subjects who move out of the study area during follow-up is rather equivalent of dropout or nonresponse, a selection bias in that it rather affects the internal validity of the study.
  • Healthy user bias, when the study population is likely healthier than the general population, e.g. workers (i.e. someone in ill-health is unlikely to have a job as manual laborer).
  • Overmatching, matching for an apparent confounder that actually is a result of the exposure. The control group becomes more similar to the cases in regard to exposure than the general population.

Read more about this topic:  Sampling Bias

Famous quotes containing the words types of, types and/or bias:

    ... there are two types of happiness and I have chosen that of the murderers. For I am happy. There was a time when I thought I had reached the limit of distress. Beyond that limit, there is a sterile and magnificent happiness.
    Albert Camus (1913–1960)

    He types his laboured column—weary drudge!
    Senile fudge and solemn:
    Spare, editor, to condemn
    These dry leaves of his autumn.
    Robertson Davies (b. 1913)

    The solar system has no anxiety about its reputation, and the credit of truth and honesty is as safe; nor have I any fear that a skeptical bias can be given by leaning hard on the sides of fate, of practical power, or of trade, which the doctrine of Faith cannot down-weigh.
    Ralph Waldo Emerson (1803–1882)