History
Russell discovered the paradox in May or June 1901. By his own admission in his 1919 Introduction to Mathematical Philosophy, he "attempted to discover some flaw in Cantor's proof that there is no greatest cardinal". In a 1902 letter, he announced the discovery to Gottlob Frege of the paradox in Frege's 1879 Begriffsschrift and framed the problem in terms of both logic and set theory, and in particular in terms of Frege's definition of function; in the following, p. 17 refers to a page in the original Begriffsschrift, and page 23 refers to the same page in van Heijenoort 1967:
There is just one point where I have encountered a difficulty. You state (p. 17 ) that a function too, can act as the indeterminate element. This I formerly believed, but now this view seems doubtful to me because of the following contradiction. Let w be the predicate: to be a predicate that cannot be predicated of itself. Can w be predicated of itself? From each answer its opposite follows. Therefore we must conclude that w is not a predicate. Likewise there is no class (as a totality) of those classes which, each taken as a totality, do not belong to themselves. From this I conclude that under certain circumstances a definable collection does not form a totality.Russell would go to cover it at length in his 1903 The Principles of Mathematics where he repeats his first encounter with the paradox:
Before taking leave of fundamental questions, it is necessary to examine more in detail the singular contradiction, already mentioned, with regard to predicates not predicable of themselves. ... I may mention that I was led to it in the endeavour to reconcile Cantor's proof...."Russell wrote to Frege about the paradox just as Frege was preparing the second volume of his Grundgesetze der Arithmetik. Frege did not waste time responding to Russell, his letter dated 22 June 1902 appears, with van Heijenoort's commentary in Heijenoort 1967:126–127. Frege then wrote an appendix admitting to the paradox, and proposed a solution that Russell would endorse in his Principles of Mathematics, but was later considered by some unsatisfactory. For his part, Russell had his work at the printers and he added an appendix on the doctrine of types.
Ernst Zermelo in his (1908) A new proof of the possibility of a well-ordering (published at the same time he published "the first axiomatic set theory") laid claim to prior discovery of the antinomy in Cantor's naive set theory. He states: "And yet, even the elementary form that Russell9 gave to the set-theoretic antinomies could have persuaded them that the solution of these difficulties is not to be sought in the surrender of well-ordering but only in a suitable restriction of the notion of set". Footnote 9 is where he stakes his claim:
91903, pp. 366–368. I had, however, discovered this antinomy myself, independently of Russell, and had communicated it prior to 1903 to Professor Hilbert among others.A written account of Zermelo's actual argument was discovered in the Nachlass of Edmund Husserl.
It is also known that unpublished discussions of set theoretical paradoxes took place in the mathematical community at the turn of the century. van Heijenoort in his commentary before Russell's 1902 Letter to Frege states that Zermelo "had discovered the paradox independently of Russell and communicated it to Hilbert, among others, prior to its publication by Russell".
In 1923, Ludwig Wittgenstein proposed to "dispose" of Russell's paradox as follows:
The reason why a function cannot be its own argument is that the sign for a function already contains the prototype of its argument, and it cannot contain itself. For let us suppose that the function F(fx) could be its own argument: in that case there would be a proposition 'F(F(fx))', in which the outer function F and the inner function F must have different meanings, since the inner one has the form O(f(x)) and the outer one has the form Y(O(fx)). Only the letter 'F' is common to the two functions, but the letter by itself signifies nothing. This immediately becomes clear if instead of 'F(Fu)' we write '(do) : F(Ou) . Ou = Fu'. That disposes of Russell's paradox. (Tractatus Logico-Philosophicus, 3.333)
Russell and Alfred North Whitehead wrote their three-volume Principia Mathematica (PM) hoping to achieve what Frege had been unable to do. They sought to banish the paradoxes of naive set theory by employing a theory of types they devised for this purpose. While they succeeded in grounding arithmetic in a fashion, it is not at all evident that they did so by purely logical means. While PM avoided the known paradoxes and allows the derivation of a great deal of mathematics, its system gave rise to new problems.
In any event, Kurt Gödel in 1930–31 proved that while the logic of much of PM, now known as first-order logic, is complete, Peano arithmetic is necessarily incomplete if it is consistent. This is very widely – though not universally – regarded as having shown the logicist program of Frege to be impossible to complete.
Read more about this topic: Russell's Paradox
Famous quotes containing the word history:
“The history of all countries shows that the working class exclusively by its own effort is able to develop only trade-union consciousness.”
—Vladimir Ilyich Lenin (18701924)
“I believe my ardour for invention springs from his loins. I cant say that the brassiere will ever take as great a place in history as the steamboat, but I did invent it.”
—Caresse Crosby (18921970)
“Bias, point of view, furyare they ... so dangerous and must they be ironed out of history, the hills flattened and the contours leveled? The professors talk ... about passion and point of view in history as a Calvinist talks about sin in the bedroom.”
—Catherine Drinker Bowen (18971973)