Admissibility and Derivability
In a set of rules, an inference rule could be redundant in the sense that it is admissible or derivable. A derivable rule is one whose conclusion can be derived from its premises using the other rules. An admissible rule is one whose conclusion holds whenever the premises hold. All derivable rules are admissible. To appreciate the difference, consider the following set of rules for defining the natural numbers (the judgment asserts the fact that is a natural number):
The first rule states that 0 is a natural number, and the second states that s(n) is a natural number if n is. In this proof system, the following rule demonstrating that the second successor of a natural number is also a natural number, is derivable:
Its derivation is just the composition of two uses of the successor rule above. The following rule for asserting the existence of a predecessor for any nonzero number is merely admissible:
This is a true fact of natural numbers, as can be proven by induction. (To prove that this rule is admissible, assume a derivation of the premise and induct on it to produce a derivation of .) However, it is not derivable, because it depends on the structure of the derivation of the premise. Because of this, derivability is stable under additions to the proof system, whereas admissibility is not. To see the difference, suppose the following nonsense rule were added to the proof system:
In this new system, the double-successor rule is still derivable. However, the rule for finding the predecessor is no longer admissible, because there is no way to derive . The brittleness of admissibility comes from the way it is proved: since the proof can induct on the structure of the derivations of the premises, extensions to the system add new cases to this proof, which may no longer hold.
Admissible rules can be thought of as theorems of a proof system. For instance, in a sequent calculus where cut elimination holds, the cut rule is admissible.
Read more about this topic: Rule Of Inference